版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
No.2024-10
UsingDensityForecastfor
Growth-at-RisktoImproveMeanForecastofGDPGrowthinKorea
YoosoonChang,Yong-gunKim,BoreumKwak,JoonY.Park
2024.9
ChangyongRhee
04531,Korea
JaeWonLee
(DirectorGeneraloftheInstitute)
2024
BOKWPNo.2024-10
UsingDensityForecastforGrowth-at-
RisktoImproveMeanForecastof
GDPGrowthinKorea
YoosoonChang*,Yong-gunKim**,BoreumKwak***,JoonY.Park?
September,2024
Theviewsexpressedhereinarethoseoftheauthors,anddonotnecessarilyreflecttheofficialviewsoftheBankofKorea.Whenreportingorcitingthispaper,theauthors’namesshouldalwaysbeexplicitlystated.
?DepartmentofEconomics,IndianaUniversity,Email:yoosoon@.??BankofKorea,Email:ygkim@bok.or.kr.
???BankofKorea,Email:br.kwak@bok.or.kr.
?DepartmentofEconomics,IndianaUniversity,Email:joon@.
TheresearchreportedinthispaperwassuggestedbyChangyongRhee,thegovernoroftheBankofKorea.WearegratefultoDomenicoGiannone,MichaelMcCracken,TatevikSekh-posyan,NamKangLee,RaffaellaGiacomini,andtoTaeyoungDohfortheirhelpfulcommentsanddiscussions.WealsothankDowanKimandJihyunKimfortheircarefulandconstructivereviewsandtheparticipantsoftheBOKseminarfortheirfeedback.ThisresearchisfinanciallysupportedbytheBankofKorea.
Contents
I.Introduction 1
II.ForecastsofKoreanGDPGrowth 5
III.TheModelandEconometricMethodology 12
IV.EmpiricalResults 18
V.Conclusion 41
A.ConstructingRealGDPGapandFinancialCondition
Index 45
B.RestrictedModelswithSingleandDoubleFactors 49
C.AdditionalResultsforRestrictedModelwithMean
Factor 53
UsingDensityForecastforGrowth-at-Riskto
ImproveMeanForecastofGDPGrowthinKorea
Inthispaper,westudyhowwemayusedensityforecaststoimprovepointfore-castsfortheKoreanGDPgrowthratesduringtheperiodfrom2013:Q3to2022:Q1.
Althoughthetimespanunderinvestigationismuchshorterthandesired,ourcon-clusionsareclear.Densityforecastsimprovepointforecasts,aslongastheyareeffectivelyapproximatedandrepresentedasfinitedimensionalvectorsbyappro-priatelychosenfunctionalbases.However,theymayonlybeusedtoadjustpointforecasts.Combiningthemwithpointforecaststodefineweightedmeanforecastsdoesnotyieldanymeaningfulimprovement.Thefunctionalbasesweuseforourbaselineapproacharetheleadingfunctionalprincipalcomponents,whichbycon-structionmostefficientlyextractthevariationsindensityforecastsovertime.Todisentangletheeffectsofthemeanandotheraspectsofdensityforecasts,however,wealsousethefunctionalbasis,whichdesignates,astheleadingfactor,themeanfactorthatcapturesthetemporalchangesinthemeanofdensityforecasts.Especiallywiththeuseofthisfunctionalbasis,weseeadrasticincreaseintheprecisionofpointforecastsfortheKoreanGDPgrowthrates.Infact,themeansquarederrorofpointforecastsdecreasesbymorethan33%,iftheyareadjustedbydensityforecastswithourfunctionalbasisincludingthemeanfactor.
Keywords:GDPgrowthrate,pointforecast,growth-at-riskdensityforecast,func-tionalregression,functionalbasis,functionalprincipalcomponentanalysis
JELClassification:C53,E17,E37
1
BOKWorkingPaperNo.2024-10
I.Introduction
TheBankofEnglandintroduceditsfamousfanchartsin1996tohelppolicy-makersandthepublicbetterunderstandtherisksanduncertaintiessurroundingtheircentralinflationprojections.Sincethen,centralbanksandmajorresearchinstitutionsworldwidehavebeenprovidingmoreinformationregardingtheun-certaintiesaroundtheirmeanorpointforecastsofkeyeconomicindicators,no-tablyforGDPgrowthandinflation.Thistrendhasledtothepublicationofdensityforecastsbyvariousinstitutionsincluding,amongothers,theBankofCanada,theNorgesBank,theFederalReserveBoardofGovernors,theNYFED,andtheIMF,eachofferingitsownestimatesfortheprobabilitydistribu-tionusingvariouseconometricapproaches,inadditiontotheconventionalpointforecasts,ofthesevariables.TheBankofKorea(BOK)isinternallyexaminingdensityforecastsaswellasannouncingpointforecastsfortheGDPgrowthinKoreatoprovidetheirassessmentsofthegrowth-at-risk(GaR),i.e.,therisksanduncertaintiesassociatedwiththefutureeconomicgrowth,inKorea.
ThetwoforecastsforGDPgrowthrates,pointforecasts,anddensityfore-castsaretypicallypreparedbydistinctiveworkinggroupsfordifferentpurposesrelyingonnotentirelyoverlappingsetsofinformation.However,pointforecastsareconsideredbymostpeopleasmeanforecasts,i.e.,forecastsofthemeanofGDPgrowthrates,1)whicharealsoprovidedbydensityforecastsasoneoftheircharacteristics.Publishingdensityforecastsaswellaspointforecaststhereforenecessarilycreatesaproblemofdiscordance,sincethemeanofadensityforecastwouldnotagreewiththecorrespondingpointforecastunlesstheyarealignedwitheachotherbeforetheirpublication.Therefore,raisedarethreeimportantissuesregardingthejointpublicationofpointanddensityforecasts:(i)whetherdensityforecastsprovideanyusefulinformationforpointforecasts,(ii)howtocombinetheadditionalinformationindensityforecastswiththatinpointfore-
1)PointforecastsmayalsobeinterpretedastheforecastsforotherdistributionalcharacteristicsofGDPgrowthratessuchasmedian,modeorevenaparticularquantilebyspecificallylookingatanappropriatelossfunctionfortheforecastingerror.Inthepaper,weusethemeansquaredlossfunctionfortheforecastingerrorassumingthatpointforecastsareregardedastheforecastsforthemeanofGDPgrowthrates.
UsingDensityForecasttoImproveMeanForecastofGDPGrowthinKorea
2
casts,andfinally(iii)howtoalignthemeanofadensityforecastwiththecor-respondingpointforecast.
Inthispaper,weaddressandfindasolutiontoeachoftheseissuesfortheforecastsofGDPgrowthratesinKorea.Aspointforecasts,weusetheBOKo?icialone-year-aheadforecastsduringtheperiodfrom2013:Q3to2022:Q1.Overthesameperiod,densityforecastsareobtainedbasedonacopulabasedapproachasproposedinLee(2020).2)Weconstructakeyvariable,theFinancialConditionIndex(FCI),usingvariouseconomicvariablesthatarebelievedtoreflectmacroandfinancialmarketconditionsinKorea.Ascovariates,weincludetherealGDPgap,theU.S.federalfundsrate(FFR),thespreadbetweentheU.S.FFRandtheKoreancallrate,aswellastheFCI.3)Foreachtimeperiod,wefollowAdrianetal.(2019)andcomputefourconditionalquantilevalues,atthelevels5%,25%,75%,and95%ofGDPgrowthratesconditionalonthesetofourcovariates,anddefineaskewedt-densitywithfourparametersthatmostcloselymatchesthecomputedconditionalquantilevaluesasourdensityforecast.
OurstudyemploysafunctionalregressionofthefutureGDPgrowthrateonitsdensityforecastasanadditionalfunctionalcovariate,aswellasitspointforecastasausualscalarcovariate.Thoughsimple,thisfunctionalregressionisexpectedtoprovidedirectanswerstoourquestions.Ifthedensityforecastisasinformativeasthepointforecast,thenitwouldcertainlyimprovetheprecisionofthepredictionifwecombinethedensityforecastwiththepointforecasttocomeupwithanewpredictor.Ourfunctionalregressioncanbeveryusefulinthiscontext,sincewemayjustrunthefunctionalregressionandeasilydefineanewpredictorasalinearcombinationofthetwocovariates:thepointforecastandthedensityforecast.Evenifthedensityforecastisnotasinformativeasthepointforecast,wemaystillusethedensityforecasttoadjustthepointforecastandimprovetheprecisionoftheforecast.Inthiscase,wemaysimplyconsiderthefunctionalregressionofthepredictionerrormadebythepointforecastonthedensityforecastasafunctionalcovariate.
2)LeewasinchargeofproducingdensityforecastsforinternaluseattheBOK,andwasworkingattheBOKatthetimethisprojectwasstartedin2022.
3)Adrianetal.(2019)useasconditioningvariablesGDPgrowthrateandFCI.
3
BOKWorkingPaperNo.2024-10
Toestimatethefunctionalregressionrequiredforourstudy,weneedtocon-vertthedensityforecastintoafinitedimensionalvector.Forthis,weapproximatethedensityforecastasafinitelinearcombinationofanappropriatelychosenfunctionalbasis,whichisrepresentedasafinitedimensionalvectorofthecoe?i-cientsappearinginthelinearcombinationofthebasisusedtoapproximatethedensityforecast.Thetransformationtomaptheapproximatedensityforecasttoafinitedimensionalvectorisone-to-oneandpreservesthedistance.Therefore,onceweapproximateandrepresentthedensityforecastasafinitedimensionalvectorusingafunctionalbasis,ourfunctionalregressionessentiallyreducestothestandardregressionthatmaybeestimatedbytheusualOLSprocedure.Anestimateforthefunctionalcoe?icientforthedensityforecastcanbeeasilyob-tainedbymappingtheOLSestimatorobtainedfromthecorrespondingstandardregressionsbacktoafunctionalestimatebyapplyingtheinversetransformation.
Forthebaselinefunctionalregressions,weusetheleadingfunctionalprin-cipalcomponents(FPCs)ofobserveddensityforecastsasourfunctionalbasis.Byconstruction,theleadingFPCsmoste?icientlyextractthevariationinanyfunctionalobservationsand,forthisreason,itismostwidelyusedasafunc-tionalbasisinawiderangeofapplicationsinfunctionaldataanalysis.Indeed,Changetal.(2022)showthatusingtheleadingFPCsasafunctionalbasistoapproximateandrepresentfunctionalobservationsasfinitedimensionalvectorsentailssomeoptimalpropertiesinestimatinggeneralfunctionalregressions.Inthepaper,however,wealsoemployanotherfunctionalbasistodisentangletheeffectofthemeanofthedensityforecast,fromtheeffectsofanyotheraspectsofthedensityforecast,onthepredictionofactualgrowthrates.Forthispurpose,weusethefunctionalbasisconsistingofthefirstelementdesignatedasthemeanfactor,whichcapturesthetemporalchangesinthemeanofthedensityforecast,andotherelementsgivenbytheleadingFPCsofthecentereddensityforecasts,i.e.,thedensityforecastswiththeirmeansshiftedtozero.
Themostseriouslimitationofourstudyisthatthereareonly35quarterlyobservationsavailablefortheo?icialBOKpointforecasts.Wearefullyawareofthefactthatoursamplesizeismuchsmallerthandesiredandthatthecon-sequenceofthislimitedavailabilityofdatacanbeseverelydetrimentaltoour
UsingDensityForecasttoImproveMeanForecastofGDPGrowthinKorea
4
study.Thismakesithardforustorelyonthesophisticatedfunctionaldataanalysisthatweneedtoadopttoinvestigateourproblemsinfullgenerality.4)Fortunately,however,weareabletodrawasetofclearandcoherentconclusionsonallofourthreemainquestions:whethertheuseofdensityforecastsishelp-fulatallforimprovingpointforecasts,howtousetheinformationondensityforecaststoprovidebetterpointforecasts,andhowtomakethemeanofden-sityforecastsaccordwithpointforecasts.Ourresultsareconsistentandrobustacrossdifferentchoicesoffunctionalbasesandvariousothertuningparameters,andtheyseemtobequitereliable.
Theuseofdensityforecasts,inadditiontopointforecasts,appearstogener-allyimprovetheprecisionoftheforecastforfutureKoreanGDPgrowthrates.Ifdensityforecastsarecombinedwithpointforecastsbasedonourfunctionalregressiontodefineweightedmeanforecasts,however,theforecastprecisiondoesnotimprovesignificantly.Foramoremeaningfulimprovement,densityforecastsshouldbeusedonlytoadjustpointforecasts.TheseareconclusionsthatwedrawfromourfunctionalregressionestimatedwiththefunctionalbasisconsistingoftheleadingFPCsofobserveddensityforecasts.Todisentangletheeffectsofthemeanandotherdistributionalaspectsofdensityforecasts,wealsouseanotherfunctionalbasisincludingthemeanfactor,whichcapturesthetemporalchangesinthemeanofdensityforecasts,andtwootherfactorsextractedastheFPCsofthecentereddensityforecasts.Withtheuseofthisfunctionalbasis,weseeamostdrasticincreaseintheprecisionoftheforecastforfutureGDPgrowthrates.Infact,themeansquarederrorofpointforecastsdecreasesbymorethan33%,iftheyareadjustedbydensityforecastswiththefunctionalbasisincludingthemeanfactor.
ThedetailsofourempiricalresultshavefurtherimplicationsonhowbestdensityforecastscanbeusedtoadjustpointforecaststoimprovetheprecisionofthepointpredictionofthefutureKoreanGDPgrowthrates.First,ourresultsshowthathistoricallythepointforecastsforKoreangrowthratestendtobelow
4)Duetothelimitedavailabilityofdata,wedidn’tperformanyformalback-testing.Wedrewourconclusionsmostlybasedonthebiasandvariancecomputedsimplyfromtheforecastingregressionmodel.
5
BOKWorkingPaperNo.2024-10
whenpessimisticfuturescenariosareprevailingwithpotentiallyhighdownsiderisks.Althoughthetendencytooverreactalsoexistswhenfuturesarehighlyoptimistic,itisnotassignificantasinthepessimisticcase.Second,accordingtoourresults,themeanofadensityforecastisimportantandshouldbeexploitedtoproduceamoreprecisepointforecast.Asaconsequence,itisnotrecommendedtoshiftthedensityforecasttomakeitsmeanalignedwiththatofthepointforecast.Thelossofinformationincurredbysuchapracticecanbesubstantial.Finally,wemayalsouseourresultstodealwiththediscrepancybetweenapointforecastandthemeanofadensityforecast.Thebestwaytodealwiththisproblemisfirsttoadjustthepointforecastusingourfunctionalregressionwiththedensityforecast,andthenrefitthedensityforecastwithitsmeanalignedwiththeadjustedpointforecast.
Therestofthepaperisorganizedasfollows.SectionIIdescribeshowweconstructdensityforecastsofGDPgrowthrates.SectionIIIprovidesabriefin-troductiontothefunctionalregressionweusetopredictgrowthrateusingdensityforecastsalongwiththeBOK’so?icialpointforecasts.SectionIVpresentsourempiricalresults.Itprovidesestimatesoftheweightsonpointforecasts,anddensityforecastsusedtoconstructanewpredictor,computestheadjustmentfactorfromdensityforecaststoimprovethepointforecast,andinvestigateshowthedensityforecastsimprovethepointforecast,especiallyinwhichwaythemeanfactorofthedensityforecastscontributestoimprovingthepointforecast.SectionIValsoprovidesdiscussionsonourfindingsandtheirimplications.Sec-tionVconcludes,andtheAppendixprovidesdetailsoftheanalysesprovidedinthemaintextandsomerobustnesschecks.
II.ForecastsofKoreanGDPGrowth
1.PointForecastofGDPGrowth
ThepointforecastsanalyzedinourstudyaretheforecastsofKoreanGDPgrowthratesconstructedbytheBankofKorea(BOK).TheBOKproducesGDPforecastsforthecurrentyearandthenextyeareveryquarterandreleasestheir
UsingDensityForecasttoImproveMeanForecastofGDPGrowthinKorea
6
forecastsfourtimesperyearinFebruary,May,August,andNovember.5)TheBOK’so?icialpointforecastsarefixed-eventforecaststhatareproducedeachquarterforthesametargetvariables,theGDPgrowthratesforthecurrentcal-endaryearandthenextcalendaryear,withdecreasingforecasthorizonsastimeprogressestowardtheendoftherespectivecalendaryear.Underthisfixed-eventforecastingscheme,forexample,theBOK’spointforecastsmadeinMay2022andAugust2022bothprovideaforecastforthesametargetvariable,i.e.,thecurrentcalendaryear2022,butwithashorterforecasthorizonfortheforecastmadelaterinAugust2022.Thefixed-eventforecaststhereforereflectdecreasinguncertaintiesineconomicconditionsastheforecasthorizonshortens,and,conse-quently,theresultingforecasterrorvariancesshowsuchseasonalcharacteristics.
Forourstudy,however,weuseanalternateforecastingschemethatpro-ducesfixed-horizonforecasts.Thefixed-horizonpointforecastsaremoresuit-ableforourempiricalanalysesfortworeasons.First,unliketheBOK’so?icialfixed-eventpointforecasts,fixed-horizonforecastsarelesssusceptibletoseasonalcharacteristicsofforecasterrorvariances.Second,withfixed-horizonforecasts,itisstraightforwardtomatchtheforecasthorizonwiththatofdensityfore-caststhatarecommonlyusedbypolicymakerstocharacterizetheuncertaintyoffuturegrowthratesaftersomefixedamountoftime.Detailsonhowwecon-structdensityforecastsfortheKoreangrowthratesareprovidedinthefollowingsubsection.
Morespecifically,weanalyzepointforecastsforone-year-aheadGDPgrowthrates.Inthisscheme,theforecasthorizonisfixedatfourquarters,whilethefore-casttargetvariablevariestorepresentthefuturegrowthratefourquartersaftertheforecastismade.Incontrasttothefixed-eventpointforecastsillustratedabove,thefixed-horizonone-year-aheadpointforecastsmadeinMay2022andAugust2022provideforecastsfortwodistincttargetvariables,thegrowthratein2023Q1andthegrowthratein2023Q2,respectively,withthesamefore-casthorizonatfourquarters,andconsequentlywithnoaforementionedseasonal
5)InNovember,theforecastsforthecurrentyearandthefollowingtwoyearsaremade.TheBOK’scurrentreportingschedulewasadoptedin2020.Priorto2020,theBOKreleaseditsforecastsinJanuary,April,July,andOctober.
7
BOKWorkingPaperNo.2024-10
patternsinforecasterrorvariances.
ToobtaintheBOK’sone-year-aheadpointforecast,wecollectthevintagequarterlypointforecastpathsconstructedbytheBOK.6)Vintagepointforecastpathsforthefirst,second,third,andfourthquartersofeachyearincludepointforecastsofGDPgrowthratesuptoseven-,six-,five-,andeight-quarters-ahead,respectively,fromthequarterswhentheo?icialforecastsweremade.Eachvin-tagepointforecastpathwasconstructedusingthesameforecastingprocedureusedtoproducetheBOK’so?icialpointforecastpublishedeachquarterinoursampleperiod.Sincethesepointforecastpathswereconstructedwiththesamedataset,thesameforecastingmodel,andthesameexpertjudgmentsasthoseusedtoproducetheo?icialpointforecasts,weassumethepointforecastsusedinourstudyaso?icialBOKone-year-aheadpointforecasts.
Forourstudy,weconstructaquarterlytimeseriesofone-year-aheadpointforecastsusing,foreachquarter,thefour-quarter-aheadforecastfromthevintagepointforecastpathfortheperiod2013:Q3to2022:Q1.Oursampleperiodisdeterminedbythedataavailability.Itstartsfrom2013:Q3sincethevintageBOK’spointforecastpathsforGDPgrowthratesareavailableonlyfromthen,anditendsin2022:Q1sinceweneedactualone-year-aheadGDPgrowthratesastheforecasttargetvariableforouranalysis.7)Oursamplesizeisrathershortwithonly35quarterlyobservations,butthisisthelongestwecanstretchifwewanttouseonlyvintagedata.Wemay,ofcourse,extendthesampleperiodifweusemodel-basedpointforecastsconstructedex-postfortheearlieryears.
2.DensityForecastofGDPGrowth
Therearemanydifferentwaystoconstructdensityforecasts.Oneofthemostcommonlyusedapproaches,duelargelytoitssimplicity,istofollowAdrianetal.
6)Quarterlypointforecastpathsareconfidentialdataandconstructedforinternalanalysisandjudgmentsonly.
7)Toconstructthetargetannualgrowthrateateachquarter,sayat2020:Q4,weneedfourquarterlyGDPleveldatafor2020:Q4,2020:Q3,2020:Q2,and2020:Q1,alongwithfouryear-over-yearGDPchanges,2021:Q4-2020:Q4,2021:Q3-2020:Q3,2021:Q2-2020:Q2,and2021:Q1-2020:Q1.
UsingDensityForecasttoImproveMeanForecastofGDPGrowthinKorea
8
(2019)andobtaindensityforecastsfromthelinearquantileregressionoffutureGDPgrowthratesonthecurrentfinancialconditionindex(FCI),aswellasGDPgrowthrate,andfitaskewedt-densitywithfourparametersthatmostcloselymatchesthecomputedquantilevalues.Asanalternative,Carrieroetal.(2020)proposemodel-implieddensityforecastsconstructedfromaBayesianVARmodel.Linearityofthequantileregressionandnormalityoftheerrordistributionhavebeenchallenged,andtherearemoreflexiblemodelsandmethodsallowingfornonlinearityandnonparametricerrordistributions.Theyincludeanonpara-metricestimationofnonlinearVARbyAdrianetal.(2021),aMarkovswitchingmodelbyCaldaraetal.(2021),useofGARCH-typevolatilitybyBrownleesandSouza(2021),andasemi-parametricestimationusingsurveyforecastsbyClarketal.(2020).
FollowingLee(2020),weestimateconditionalquantilesoffutureGDPgrowthbyutilizingaD-vinecopulabasedquantileregressionmethodasintroducedbyKrausandCzado(2017).Givencovariates(Xt),Xt=(X1t,...,XMt),thefunc-
tionQYt+h∣X(τ∣x)representingtheτ-thconditionalquantilevalueofthevariable(Yt+h)ofinterestisdefinedastheinverseoftheconditionaldistributionfunc-
tionFY?th∣Xt(r∣xt)of(Yt+h)on(Xt).Incontrasttothelinearquantileregression
modelusedbyAdrianetal.(2019),assumingalinearrelationshipbetweentheconditionalquantilesandexplanatoryvariables,thecopulabasedquantilere-gressionmethodallowsustoinvestigateanonlinearrelationshipbetweentheconditionalquantilesandcovariatesbymodelingtheconditionaldistributionfunction(FYt+h∣Xt)asacopulafunction.8)
Specifically,wesupposethatthevariable(Yt+h)ofinterestandcovariates
spectively.Thenwedefine(Vt+h)and
1followunivariatemarginaldistributionfunctionsFYt+hand(FXj)1,re-
8)Linearquantileregressionmodelssusceptibletothepotentialissueofquantilecrossingasconditionalquantilesarea?inefunctionsofcovariatesXt.Underthisspecification,theslopeparametersdependontheprobabilityindexτ,whichmaycausequantilesatdifferentvaluesofτtocrosseachother,and,therefore,theconditionalquantilescannotbelinearincovariatesXt.Thisissuepossiblyleadstobiasintheestimation,which,inturn,mayresultinover-orunderestimatingrisks.Ontheotherhand,thecopula-basedconditionalquantilefunctionnaturallysatisfiesmonotonicitywithoutsuchanissue.
9
BOKWorkingPaperNo.2024-10
FXj(Xj)bytheprobabilityintegraltransformation(PIT)of(Yt+h)and(Xjt),re-spectively,whichareuniformlydistributedontheinterval[0,1],andsetthejointdistributionof(Yt+h)and(Xt)as
F(yt+h,x1t,...,xMt)=C(vt+h,u1t,...,uMt),
whereCdenotesacopulathatisa(M+1)-dimensionaldistributionfunctiononthehypercube[0,1]M+1withuniformlydistributedmarginals.Theconditionaldistributionfunction(FYt+h∣Xt)of(Yt+h)on(Xt)cannowbewrittenasthatoftheirPITcounterparts,i.e.,
FYt+h∣Xt(r∣xt)=CVt+h∣Ut(r∣ut),
forr∈R.Asaresult,theconditionalquantilefunctionof(Yt+h)on(Xt)canbeobtainedfromtheconditionalcopulaquantilefunctionCVt+h∣Utof(Vt+h)on(Ut)
as
QYt+h∣Xt(τ∣xt)=FY?th∣Xt(CVt+h∣Ut(τ∣ut)),(II.1)
forτ∈(0,1).AD-vine,asasubclassofregularvinecopulas,allowsustomodelmultivariatecopulasusingtheblocksofbivariatecopulas,aso-calledpair-copulaconstruction.RefertoAasetal.(2009)foradetailedexaminationofbivariatepair-copulas.KrausandCzado(2017)implementaD-vinecopulatomodelquan-tileregressionsandshowthattheproposedmethodworksfastandaccuratelyeveninhighdimensions.
Inpractice,usingaD-vinecopulabasedquantileregression,weestimateconditionalquantilesofh-quarter-aheadrealGDPgapforh=1,...,4.Toobtain
adensityforecastofone-year-aheadrealGDPgrowth,wetransformestimatesoftheh-quarter-aheadrealGDPgaptotheconditionalquantilesoftheone-year-aheadrealGDPgrowthrateandthenfitthoseestimatestotheskewedt-distribution.Toestimatethenon-linearquantileregressionmodel(II.1),weconsidertheh-quarter-aheadrealGDPgap,whichisthecyclicalcomponentofrealGDPastheresponsevariable.FollowingHamilton(2018),wedecomposetherealGDPintotrendandcyclicalcomponentsbyregressingtheh-quarter-ahead
UsingDensityForecasttoImproveMeanForecastofGDPGrowthinKorea
10
logrealGDPontheconstant,current,andlaggedvaluesoflogrealGDP.Forexplanatoryvariables,weusetherealGDPgap,theFCI,theU.S.FFR,andthedifferencebetweentheU.S.FFRandthecallrateinKoreaavailableattimet.DetailsforconstructingrealGDPgapandFCIareavailableinAppendixA.Thedatasetusedintheestimationofdensityforecastisavailablefrom1991:Q2to2022:Q4.AllvariablesusedfordataconstructionareobtainedfromtheBOKEconomicStatisticsSystem(ECOS).
WeobtainapproximateestimatesoftheconditionalquantilefunctionfortheGDPgapforuptofourquartersaheadbyestimatinganonlinearquantileregression(II.1).Foreachquantile,weconverttheh-quarter-aheadGDPgapintothelevelofGDPbyaddingbackthetrendcomponentestimatedusingHamilton’sregression-basedfilter.Werandomlydrawh-period-aheadrealGDP30,000timesfromtheconditionalquantilesoftherealGDPlevelandcalculatetheone-year-aheadGDPgrowthrateforeachsimulationoverthepreviousfourquartersofrealGDPobservationstoobtainconditionalquantilesoftheone-year-aheadrealGDPgrowthrate.
Inthesubsequentstep,asinAdrianetal.(2019),wefittheskewedt-densitytosmooththeconditionalquantilevaluesandrecoveraprobabilitydensityfunctionof
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版土地租賃及資源開(kāi)發(fā)合同3篇
- 2025版二手豪華轎車買賣及車主尊享保養(yǎng)套餐合同3篇
- 山東省濟(jì)寧市曲阜市2024-2025學(xué)年九年級(jí)上學(xué)期期末歷史試題(含答案)
- 公共基礎(chǔ)-試驗(yàn)檢驗(yàn)師(含助理)《公共基礎(chǔ)》模擬試卷5
- 公交車輛電動(dòng)化發(fā)展趨勢(shì)分析考核試卷
- 二零二五年港口拖輪服務(wù)與海運(yùn)運(yùn)輸合同3篇
- 2025年健康養(yǎng)生孕前保養(yǎng)合同
- 2025年在線美食分享平臺(tái)用戶注冊(cè)協(xié)議
- 2025年體育器材贈(zèng)與協(xié)議
- 二零二五年肉牛養(yǎng)殖項(xiàng)目配套購(gòu)牛合同3篇
- 湖北省黃石市陽(yáng)新縣2024-2025學(xué)年八年級(jí)上學(xué)期數(shù)學(xué)期末考試題 含答案
- 硝化棉是天然纖維素硝化棉制造行業(yè)分析報(bào)告
- 央視網(wǎng)2025亞冬會(huì)營(yíng)銷方案
- 《00541語(yǔ)言學(xué)概論》自考復(fù)習(xí)題庫(kù)(含答案)
- 《無(wú)砟軌道施工與組織》 課件 第十講雙塊式無(wú)砟軌道施工工藝
- 江蘇省南京市、鹽城市2023-2024學(xué)年高三上學(xué)期期末調(diào)研測(cè)試+英語(yǔ)+ 含答案
- 2024新版《藥品管理法》培訓(xùn)課件
- 《阻燃材料與技術(shù)》課件 第7講 阻燃橡膠材料
- 爆炸物運(yùn)輸安全保障方案
- 江蘇省南京市2025屆高三學(xué)業(yè)水平調(diào)研考試數(shù)學(xué)試卷(解析版)
- 2024年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(附答案)
評(píng)論
0/150
提交評(píng)論