版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省瓦房店市八中2025屆新課標Ⅱ卷高考考前15天終極沖刺數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在空間直角坐標系中,四面體各頂點坐標分別為:.假設螞蟻窩在點,一只螞蟻從點出發(fā),需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.2.設為非零實數,且,則()A. B. C. D.3.已知雙曲線的實軸長為,離心率為,、分別為雙曲線的左、右焦點,點在雙曲線上運動,若為銳角三角形,則的取值范圍是()A. B. C. D.4.設是虛數單位,復數()A. B. C. D.5.我國古代有著輝煌的數學研究成果,其中的《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《緝古算經》,有豐富多彩的內容,是了解我國古代數學的重要文獻.這5部專著中有3部產生于漢、魏、晉、南北朝時期.某中學擬從這5部專著中選擇2部作為“數學文化”校本課程學習內容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為()A. B. C. D.6.為得到y(tǒng)=sin(2x-πA.向左平移π3個單位B.向左平移πC.向右平移π3個單位D.向右平移π7.已知函數的最大值為,若存在實數,使得對任意實數總有成立,則的最小值為()A. B. C. D.8.已知方程表示的曲線為的圖象,對于函數有如下結論:①在上單調遞減;②函數至少存在一個零點;③的最大值為;④若函數和圖象關于原點對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④9.已知函數的定義域為,且,當時,.若,則函數在上的最大值為()A.4 B.6 C.3 D.810.博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P211.某醫(yī)院擬派2名內科醫(yī)生、3名外科醫(yī)生和3名護士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內科醫(yī)生、外科醫(yī)生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種12.在中,,,,點,分別在線段,上,且,,則().A. B. C.4 D.9二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在棱長為2的正方體中,點、分別是棱,的中點,是側面正方形內一點(含邊界),若平面,則線段長度的取值范圍是______.14.設數列的前n項和為,且,若,則______________.15.若存在實數使得不等式在某區(qū)間上恒成立,則稱與為該區(qū)間上的一對“分離函數”,下列各組函數中是對應區(qū)間上的“分離函數”的有___________.(填上所有正確答案的序號)①,,;②,,;③,,;④,,.16.在的二項展開式中,只有第5項的二項式系數最大,則該二項展開式中的常數項等于_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求的直角坐標方程和的直角坐標;(2)設與交于,兩點,線段的中點為,求.18.(12分)已知函數,其中為實常數.(1)若存在,使得在區(qū)間內單調遞減,求的取值范圍;(2)當時,設直線與函數的圖象相交于不同的兩點,,證明:.19.(12分)在四棱錐中,底面是邊長為2的菱形,是的中點.(1)證明:平面;(2)設是線段上的動點,當點到平面距離最大時,求三棱錐的體積.20.(12分)已知函數(1)若,不等式的解集;(2)若,求實數的取值范圍.21.(12分)在中,為邊上一點,,.(1)求;(2)若,,求.22.(10分)在四棱錐中,底面是邊長為2的菱形,是的中點.(1)證明:平面;(2)設是直線上的動點,當點到平面距離最大時,求面與面所成二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C本題考查了余弦定理解三角形,需熟記定理的內容,考查了學生的空間想象能力,屬于中檔題.2.C【解析】
取,計算知錯誤,根據不等式性質知正確,得到答案.【詳解】,故,,故正確;取,計算知錯誤;故選:.本題考查了不等式性質,意在考查學生對于不等式性質的靈活運用.3.A【解析】
由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結合即可解決.【詳解】由已知可得,,所以,從而雙曲線方程為,不妨設點在雙曲線右支上運動,則,當時,此時,所以,,所以;當軸時,,所以,又為銳角三角形,所以.故選:A.本題考查雙曲線的性質及其應用,本題的關鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.4.D【解析】
利用復數的除法運算,化簡復數,即可求解,得到答案.【詳解】由題意,復數,故選D.本題主要考查了復數的除法運算,其中解答中熟記復數的除法運算法則是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.5.D【解析】
利用列舉法,從這5部專著中選擇2部作為“數學文化”校本課程學習內容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結果.【詳解】《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《緝古算經》,這5部專著中有3部產生于漢、魏、晉、南北朝時期.記這5部專著分別為,其中產生于漢、魏、晉、南北朝時期.從這5部專著中選擇2部作為“數學文化”校本課程學習內容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為.故選D.本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數是解題的關鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現象的發(fā)生.6.D【解析】試題分析:因為,所以為得到y(tǒng)=sin(2x-π3)的圖象,只需要將考點:三角函數的圖像變換.7.B【解析】
根據三角函數的兩角和差公式得到,進而可以得到函數的最值,區(qū)間(m,n)長度要大于等于半個周期,最終得到結果.【詳解】函數則函數的最大值為2,存在實數,使得對任意實數總有成立,則區(qū)間(m,n)長度要大于等于半個周期,即故答案為:B.這個題目考查了三角函數的兩角和差的正余弦公式的應用,以及三角函數的圖像的性質的應用,題目比較綜合.8.C【解析】
分四類情況進行討論,然后畫出相對應的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當時,,此時不存在圖象;(2)當時,,此時為實軸為軸的雙曲線一部分;(3)當時,,此時為實軸為軸的雙曲線一部分;(4)當時,,此時為圓心在原點,半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調遞減,所以①正確;對于②,函數與的圖象沒有交點,即沒有零點,所以②錯誤;對于③,由函數圖象的對稱性可知③錯誤;對于④,函數和圖象關于原點對稱,則中用代替,用代替,可得,所以④正確.故選:C本題主要考查了雙曲線的簡單幾何性質,函數的圖象與性質,函數的零點概念,考查了數形結合的數學思想.9.A【解析】
根據所給函數解析式滿足的等量關系及指數冪運算,可得;利用定義可證明函數的單調性,由賦值法即可求得函數在上的最大值.【詳解】函數的定義域為,且,則;任取,且,則,故,令,,則,即,故函數在上單調遞增,故,令,,故,故函數在上的最大值為4.故選:A.本題考查了指數冪的運算及化簡,利用定義證明抽象函數的單調性,賦值法在抽象函數求值中的應用,屬于中檔題.10.C【解析】
將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1=;方案二坐車可能:312、321,所以,P1=;所以P1+P2=故選C.本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個數,屬于基礎題.11.B【解析】
根據條件2名內科醫(yī)生,每個村一名,3名外科醫(yī)生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,根據排列組合進行計算即可.【詳解】2名內科醫(yī)生,每個村一名,有2種方法,3名外科醫(yī)生和3名護士,平均分成兩組,要求外科醫(yī)生和護士都有,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,屬于??碱}型.12.B【解析】
根據題意,分析可得,由余弦定理求得的值,由可得結果.【詳解】根據題意,,則在中,又,則則則則故選:B此題考查余弦定理和向量的數量積運算,掌握基本概念和公式即可解決,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
取中點,連結,,推導出平面平面,從而點在線段上運動,作于,由,能求出線段長度的取值范圍.【詳解】取中點,連結,,在棱長為2的正方體中,點、分別是棱、的中點,,,,,平面平面,是側面正方形內一點(含邊界),平面,點在線段上運動,在等腰△中,,,作于,由等面積法解得:,,線段長度的取值范圍是,.故答案為:,.本題考查線段長的取值范圍的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.14.9【解析】
用換中的n,得,作差可得,從而數列是等比數列,再由即可得到答案.【詳解】由,得,兩式相減,得,即;又,解得,所以數列為首項為-3、公比為3的等比數列,所以.故答案為:9.本題考查已知與的關系求數列通項的問題,要注意n的范圍,考查學生運算求解能力,是一道中檔題.15.①②④【解析】
由題意可知,若要存在使得成立,我們可考慮兩函數是否存在公切點,若兩函數在公切點對應的位置一個單增,另一個單減,則很容易判斷,對①,③,④都可以采用此法判斷,對②分析式子特點可知,,進而判斷【詳解】①時,令,則,單調遞增,,即.令,則,單調遞減,,即,因此,滿足題意.②時,易知,滿足題意.③注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為,易知,,因此不存在直線滿足題意.④時,注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為.令,則,易知在上單調遞增,在上單調遞減,所以,即.令,則,易知在上單調遞減,在上單調遞增,所以,即.因此,滿足題意.故答案為:①②④本題考查新定義題型、利用導數研究函數圖像,轉化與化歸思想,屬于中檔題16.1【解析】
由題意可得,再利用二項展開式的通項公式,求得二項展開式常數項的值.【詳解】的二項展開式的中,只有第5項的二項式系數最大,,通項公式為,令,求得,可得二項展開式常數項等于,故答案為1.本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),(2)【解析】
(1)利用互化公式把曲線C化成直角坐標方程,把點P的極坐標化成直角坐標;(2)把直線l的參數方程的標準形式代入曲線C的直角坐標方程,根據韋達定理以及參數t的幾何意義可得.【詳解】(1)由ρ2得ρ2+ρ2sin2θ=2,將ρ2=x2+y2,y=ρsinθ代入上式并整理得曲線C的直角坐標方程為y2=1,設點P的直角坐標為(x,y),因為P的極坐標為(,),所以x=ρcosθcos1,y=ρsinθsin1,所以點P的直角坐標為(1,1).(2)將代入y2=1,并整理得41t2+110t+25=0,因為△=1102﹣4×41×25=8000>0,故可設方程的兩根為t1,t2,則t1,t2為A,B對應的參數,且t1+t2,依題意,點M對應的參數為,所以|PM|=||.本題考查了簡單曲線的極坐標方程,屬中檔題.18.(1);(2)見解析.【解析】
(1)將所求問題轉化為在上有解,進一步轉化為函數最值問題;(2)將所證不等式轉化為,進一步轉化為,然后再通過構造加以證明即可.【詳解】(1),根據題意,在內存在單調減區(qū)間,則不等式在上有解,由得,設,則,當且僅當時,等號成立,所以當時,,所以存在,使得成立,所以的取值范圍為。(2)當時,,則,從而所證不等式轉化為,不妨設,則不等式轉化為,即,即,令,則不等式轉化為,因為,則,從而不等式化為,設,則,所以在上單調遞增,所以即不等式成立,故原不等式成立.本題考查了利用導數研究函數單調性、利用導數證明不等式,這里要強調一點,在證明不等式時,通常是構造函數,將問題轉化為函數的極值或最值來處理,本題是一道有高度的壓軸解答題.19.(1)見解析(2)【解析】
(1)連接與交于,連接,證明即可得證線面平行;(2)首先證明平面(只要取中點,可證平面,從而得,同理得),因此點到直線的距離即為點到平面的距離,由平面幾何知識易得最大值,然后可計算體積.【詳解】(1)證明:連接與交于,連接,因為是菱形,所以為的中點,又因為為的中點,所以,因為平面平面,所以平面.(2)解:取中點,連接,因為四邊形是菱形,,且,所以,又,所以平面,又平面,所以.同理可證:,又,所以平面,所以平面平面,又平面平面,所以點到直線的距離即為點到平面的距離,過作直線的垂線段,在所有垂線段中長度最大為,因為為的中點,故點到平面的最大距離為1,此時,為的中點,即,所以,所以.本題考查證明線面平行,考查求棱錐的體積,掌握面面垂直與線面垂直的判定與性質是解題關鍵.20.(1)(2)【解析】
(1)依題意可得,再用零點分段法分類討論可得;(2)依題意可得對恒成立,根據絕對值的幾何意義將絕對值去掉,分別求出解集,則兩解集的并集為,得到不等式即可解得;【詳解】解:(1)若,,則,即,當時,原不等式等價于,解得當時,原不等式等價于,解得,所以;當時,原不等式等價于,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人股權并購及整合實施合同4篇
- 二零二五年度個人消費貸款擔保協(xié)議書4篇
- 二零二五年度門窗行業(yè)供應鏈管理服務合同8篇
- 2025年度個人二手房買賣合同交易稅費減免優(yōu)惠政策4篇
- 2025年房地產教育咨詢服務代理合同2篇
- 2025年度個人股權投資協(xié)議(風險投資)4篇
- 地鐵主體結構施工方案
- 市場研究專題報告十一 鈣通道阻滯劑市場研究專題報告202410
- 二零二五年度模具生產車間環(huán)保治理承包協(xié)議4篇
- 巴中水下施工方案
- 人教版(2025新版)七年級下冊英語:寒假課內預習重點知識默寫練習
- 藝術品捐贈協(xié)議
- 2024年食品行業(yè)員工勞動合同標準文本
- 網絡安全系統(tǒng)運維方案
- 【公開課】同一直線上二力的合成+課件+2024-2025學年+人教版(2024)初中物理八年級下冊+
- 高職組全國職業(yè)院校技能大賽(嬰幼兒照護賽項)備賽試題庫(含答案)
- 2024年公安部直屬事業(yè)單位招聘筆試參考題庫附帶答案詳解
- NB-T 47013.15-2021 承壓設備無損檢測 第15部分:相控陣超聲檢測
- 終端攔截攻略
- 藥物外滲處理及預防【病房護士安全警示教育培訓課件】--ppt課件
- 紙箱檢驗標準新
評論
0/150
提交評論