江蘇省南通市、泰州市2025年高三下學(xué)期4月暑期摸底數(shù)學(xué)試題含解析_第1頁
江蘇省南通市、泰州市2025年高三下學(xué)期4月暑期摸底數(shù)學(xué)試題含解析_第2頁
江蘇省南通市、泰州市2025年高三下學(xué)期4月暑期摸底數(shù)學(xué)試題含解析_第3頁
江蘇省南通市、泰州市2025年高三下學(xué)期4月暑期摸底數(shù)學(xué)試題含解析_第4頁
江蘇省南通市、泰州市2025年高三下學(xué)期4月暑期摸底數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省南通市、泰州市2025年高三下學(xué)期4月暑期摸底數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中,滿足的的系數(shù)之和為()A. B. C. D.2.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.3.已知向量,,,若,則()A. B. C. D.4.函數(shù)的圖象大致是()A. B.C. D.5.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.6.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.7.已知二次函數(shù)的部分圖象如圖所示,則函數(shù)的零點所在區(qū)間為()A. B. C. D.8.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.9.已知銳角滿足則()A. B. C. D.10.若實數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.11.在中,在邊上滿足,為的中點,則().A. B. C. D.12.已知函數(shù)的圖象如圖所示,則下列說法錯誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)在上單調(diào)遞增C.函數(shù)的對稱中心是D.函數(shù)的對稱軸是二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)()在區(qū)間上的值小于0恒成立,則的取值范圍是________.14.(5分)已知曲線的方程為,其圖象經(jīng)過點,則曲線在點處的切線方程是____________.15.平面向量與的夾角為,,,則__________.16.根據(jù)如圖所示的偽代碼,若輸入的的值為2,則輸出的的值為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)若關(guān)于的方程的兩根都大于2,求實數(shù)的取值范圍.18.(12分)已知函數(shù).(1)求不等式的解集;(2)若正數(shù)、滿足,求證:.19.(12分)十八大以來,黨中央提出要在2020年實現(xiàn)全面脫貧,為了實現(xiàn)這一目標,國家對“新農(nóng)合”(新型農(nóng)村合作醫(yī)療)推出了新政,各級財政提高了對“新農(nóng)合”的補助標準.提高了各項報銷的比例,其中門診報銷比例如下:表1:新農(nóng)合門診報銷比例醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院門診報銷比例60%40%30%20%根據(jù)以往的數(shù)據(jù)統(tǒng)計,李村一個結(jié)算年度門診就診人次情況如下:表2:李村一個結(jié)算年度門診就診情況統(tǒng)計表醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院一個結(jié)算年度內(nèi)各門診就診人次占李村總就診人次的比例70%10%15%5%如果一個結(jié)算年度每人次到村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院門診平均費用分別為50元、100元、200元、500元.若李村一個結(jié)算年度內(nèi)去門診就診人次為2000人次.(Ⅰ)李村在這個結(jié)算年度內(nèi)去三甲醫(yī)院門診就診的人次中,60歲以上的人次占了80%,從去三甲醫(yī)院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的概率是多少?(Ⅱ)如果將李村這個結(jié)算年度內(nèi)門診就診人次占全村總就診人次的比例視為概率,求李村這個結(jié)算年度每人次用于門診實付費用(報銷后個人應(yīng)承擔部分)的分布列與期望.20.(12分)已知數(shù)列滿足對任意都有,其前項和為,且是與的等比中項,.(1)求數(shù)列的通項公式;(2)已知數(shù)列滿足,,設(shè)數(shù)列的前項和為,求大于的最小的正整數(shù)的值.21.(12分)已知的圖象在處的切線方程為.(1)求常數(shù)的值;(2)若方程在區(qū)間上有兩個不同的實根,求實數(shù)的值.22.(10分)已知直線是曲線的切線.(1)求函數(shù)的解析式,(2)若,證明:對于任意,有且僅有一個零點.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

,有,,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得.【詳解】當時,的展開式中的系數(shù)為.當,時,系數(shù)為;當,時,系數(shù)為;當,時,系數(shù)為;故滿足的的系數(shù)之和為.故選:B.本題考查二項式定理,掌握二項式定理和多項式乘法是解題關(guān)鍵.2.C【解析】

根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎(chǔ)題.3.A【解析】

根據(jù)向量坐標運算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】,,解得:故選:本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問題,涉及到平面向量的坐標運算;關(guān)鍵是明確若兩向量平行,則.4.B【解析】

根據(jù)函數(shù)表達式,把分母設(shè)為新函數(shù),首先計算函數(shù)定義域,然后求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負判斷函數(shù)單調(diào)性,對應(yīng)函數(shù)圖像得到答案.【詳解】設(shè),,則的定義域為.,當,,單增,當,,單減,則.則在上單增,上單減,.選B.本題考查了函數(shù)圖像的判斷,用到了換元的思想,簡化了運算,同學(xué)們還可以用特殊值法等方法進行判斷.5.D【解析】

直接利用復(fù)數(shù)的模的求法的運算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項:本題考查復(fù)數(shù)的模的運算法則的應(yīng)用,復(fù)數(shù)的模的求法,考查計算能力.6.A【解析】

由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,結(jié)合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計算.【詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長為,如圖:的外接圓的圓心為斜邊的中點,,且平面,,的中點為外接球的球心,半徑,外接球表面積.故選:A本題考查了由三視圖求幾何體的外接球的表面積,根據(jù)三視圖判斷幾何體的結(jié)構(gòu)特征,利用幾何體的結(jié)構(gòu)特征與數(shù)據(jù)求得外接球的半徑是解答本題的關(guān)鍵.7.B【解析】由函數(shù)f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調(diào)遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據(jù)函數(shù)的零點存在性定理可知,函數(shù)g(x)的零點所在的區(qū)間是(0,1),故選B.8.D【解析】

連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.本題考查向量的線性運算問題,屬于基礎(chǔ)題9.C【解析】

利用代入計算即可.【詳解】由已知,,因為銳角,所以,,即.故選:C.本題考查二倍角的正弦、余弦公式的應(yīng)用,考查學(xué)生的運算能力,是一道基礎(chǔ)題.10.B【解析】

根據(jù)所給不等式組,畫出不等式表示的可行域,將目標函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當經(jīng)過原點時截距最小,;當經(jīng)過時,截距最大值,,所以線性目標函數(shù)的取值范圍為,故選:B.本題考查了線性規(guī)劃的簡單應(yīng)用,線性目標函數(shù)取值范圍的求法,屬于基礎(chǔ)題.11.B【解析】

由,可得,,再將代入即可.【詳解】因為,所以,故.故選:B.本題考查平面向量的線性運算性質(zhì)以及平面向量基本定理的應(yīng)用,是一道基礎(chǔ)題.12.B【解析】

根據(jù)圖象求得函數(shù)的解析式,結(jié)合余弦函數(shù)的單調(diào)性與對稱性逐項判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當時,函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當時,函數(shù)在上單調(diào)遞增,故B錯誤;令,得,故函數(shù)的對稱中心是,故C正確;令,得,故函數(shù)的對稱軸是,故D正確.故選:B.本題考查由圖象求余弦型函數(shù)的解析式,同時也考查了余弦型函數(shù)的單調(diào)性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

首先根據(jù)的取值范圍,求得的取值范圍,由此求得函數(shù)的值域,結(jié)合區(qū)間上的值小于0恒成立列不等式組,解不等式組求得的取值范圍.【詳解】由于,所以,由于區(qū)間上的值小于0恒成立,所以().所以,由于,所以,由于,所以令得.所以的取值范圍是.故答案為:本小題主要考查三角函數(shù)值域的求法,考查三角函數(shù)值恒小于零的問題的求解,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.14.【解析】

依題意,將點的坐標代入曲線的方程中,解得.由,得,則曲線在點處切線的斜率,所以在點處的切線方程是,即.15.【解析】

由平面向量模的計算公式,直接計算即可.【詳解】因為平面向量與的夾角為,所以,所以;故答案為本題主要考查平面向量模的計算,只需先求出向量的數(shù)量積,進而即可求出結(jié)果,屬于基礎(chǔ)題型.16.【解析】

滿足條件執(zhí)行,否則執(zhí)行.【詳解】本題實質(zhì)是求分段函數(shù)在處的函數(shù)值,當時,.故答案為:1本題考查條件語句的應(yīng)用,此類題要做到讀懂算法語句,本題是一道容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.【解析】

先令,根據(jù)題中條件得到,求解,即可得出結(jié)果.【詳解】因為關(guān)于的方程的兩根都大于2,令所以有,解得,所以.本題主要考查一元二次方程根的分布問題,熟記二次函數(shù)的特征即可,屬于??碱}型.18.(1);(2)見解析【解析】

(1)等價于(Ⅰ)或(Ⅱ)或(Ⅲ),分別解出,再求并集即可;(2)利用基本不等式及可得,代入可得最值.【詳解】(1)等價于(Ⅰ)或(Ⅱ)或(Ⅲ)由(Ⅰ)得:由(Ⅱ)得:由(Ⅲ)得:.原不等式的解集為;(2),,,,,當且僅當,即時取等號,,當且僅當即時取等號,.本題考查分類討論解絕對值不等式,考查三角不等式的應(yīng)用及基本不等式的應(yīng)用,是一道中檔題.19.(Ⅰ);(Ⅱ)的發(fā)分布列為:X2060140400P0.70.10.150.05期望.【解析】

(Ⅰ)由表2可得去各個門診的人次比例可得2000人中各個門診的人數(shù),即可知道去三甲醫(yī)院的總?cè)藬?shù),又有60歲所占的百分比可得60歲以上的人數(shù),進而求出任選2人60歲以上的概率;(Ⅱ)由去各門診結(jié)算的平均費用及表1所報的百分比可得隨機變量的可能取值,再由概率可得的分布列,進而求出概率.【詳解】解:(Ⅰ)由表2可得李村一個結(jié)算年度內(nèi)去門診就診人次為2000人次,分別去村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院人數(shù)為,,,,而三甲醫(yī)院門診就診的人次中,60歲以上的人次占了,所以去三甲醫(yī)院門診就診的人次中,60歲以上的人數(shù)為:人,設(shè)從去三甲醫(yī)院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的事件記為,則;(Ⅱ)由題意可得隨機變量的可能取值為:,,,,,,,,所以的發(fā)分布列為:X2060140400P0.70.10.150.05所以可得期望.本題主要考查互斥事件、隨機事件的概率計算公式、分布列及其數(shù)學(xué)期望、組合計算公式,考查了推理能力與計算能力,屬于中檔題.20.(1)(2)4【解析】

(1)利用判斷是等差數(shù)列,利用求出,利用等比中項建立方程,求出公差可得.(2)利用的通項公式,求出,用錯位相減法求出,最后建立不等式求出最小的正整數(shù).【詳解】解:任意都有,數(shù)列是等差數(shù)列,,又是與的等比中項,,設(shè)數(shù)列的公差為,且,則,解得,,;由題意可知,①,②,①﹣②得:,,,由得,,,,滿足條件的最小的正整數(shù)的值為.本題考查等差數(shù)列的通項公式和前項和公式及錯位相減法求和.(1)解決等差數(shù)列通項的思路(1)在等差數(shù)列中,是最基本的兩個量,一般可設(shè)出和,利用等差數(shù)列的通項公式和前項和公式列方程(組)求解即可.(2)錯位相減法求和的方法:如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項和時,可采用錯位相減法,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解;在寫“”與“”的表達式時應(yīng)特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式21.(1);(2)或.【解析】

(1)求出,由,建立方程求解,即可求出結(jié)論;(2)根據(jù)函數(shù)的單調(diào)區(qū)間,極值,做出函數(shù)在的圖象,即可求解.【詳解】(1),由題意知,解得(舍去)或.(2)當時,故方程有根,根為或,+0-0+極大值極小值由表可見,當時,有極小值0.由上表可知的減函數(shù)區(qū)間為,遞增區(qū)間為,.因為,.由數(shù)形結(jié)合可得或.本題考查導(dǎo)數(shù)的幾何意義,應(yīng)用函數(shù)的圖象是解題的關(guān)鍵,意在考查直觀想象、邏輯推理和數(shù)學(xué)計算能力,屬于中檔題.22.(1)(2)證明見解析【解析】

(1)對函數(shù)求導(dǎo),并設(shè)切點,利用點既在曲線上、又在切線上,列出方程組,解得,即可得答案;(2)當x充分小時,當x充分大時,可得至少有一個零點.再證明零點的唯一性,即對函數(shù)求導(dǎo)得,對分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論