廣西桂林市臨桂縣重點名校2023-2024學年中考沖刺卷數(shù)學試題含解析_第1頁
廣西桂林市臨桂縣重點名校2023-2024學年中考沖刺卷數(shù)學試題含解析_第2頁
廣西桂林市臨桂縣重點名校2023-2024學年中考沖刺卷數(shù)學試題含解析_第3頁
廣西桂林市臨桂縣重點名校2023-2024學年中考沖刺卷數(shù)學試題含解析_第4頁
廣西桂林市臨桂縣重點名校2023-2024學年中考沖刺卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣西桂林市臨桂縣重點名校2023-2024學年中考沖刺卷數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,以O(shè)為圓心的圓與直線交于A、B兩點,若△OAB恰為等邊三角形,則弧AB的長度為()A. B.π C.π D.π2.在Rt△ABC中,∠C=90°,AB=4,AC=1,則cosB的值為()A. B. C. D.3.下列說法:四邊相等的四邊形一定是菱形順次連接矩形各邊中點形成的四邊形一定是正方形對角線相等的四邊形一定是矩形經(jīng)過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分其中正確的有個.A.4 B.3 C.2 D.14.拋物線y=mx2﹣8x﹣8和x軸有交點,則m的取值范圍是()A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠05.如圖,嘉淇同學拿20元錢正在和售貨員對話,且一本筆記本比一支筆貴3元,請你仔細看圖,1本筆記本和1支筆的單價分別為()A.5元,2元 B.2元,5元C.4.5元,1.5元 D.5.5元,2.5元6.下列運算正確的是()A.5ab﹣ab=4 B.a(chǎn)6÷a2=a4C. D.(a2b)3=a5b37.如圖,的三邊的長分別為20,30,40,點O是三條角平分線的交點,則等于()A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶58.甲、乙兩人沿相同的路線由A地到B地勻速前進,A、B兩地間的路程為40km.他們前進的路程為s(km),甲出發(fā)后的時間為t(h),甲、乙前進的路程與時間的函數(shù)圖象如圖所示.根據(jù)圖象信息,下列說法不正確的是()A.甲的速度是10km/h B.乙的速度是20km/hC.乙出發(fā)h后與甲相遇 D.甲比乙晚到B地2h9.如圖1,在△ABC中,AB=BC,AC=m,D,E分別是AB,BC邊的中點,點P為AC邊上的一個動點,連接PD,PB,PE.設(shè)AP=x,圖1中某條線段長為y,若表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則這條線段可能是()A.PD B.PB C.PE D.PC10.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,則∠B′等于()A.30° B.50° C.40° D.70°11.如圖,平面直角坐標中,點A(1,2),將AO繞點A逆時針旋轉(zhuǎn)90°,點O的對應(yīng)點B恰好落在雙曲線y=kxA.2 B.3 C.4 D.612.在平面直角坐標系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如圖所示的方式放置,其中點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017D2017的邊長是()A.(12)2016B.(12)2017C.(33)2016D.(二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在Rt△ABC中,∠ACB=90°,D、E、F分別是AB、BC、CA的中點,若CD=3cm,則EF=________cm.14.實數(shù),﹣3,,,0中的無理數(shù)是_____.15.如圖,在△ABC中,AB=3+,∠B=45°,∠C=105°,點D、E、F分別在AC、BC、AB上,且四邊形ADEF為菱形,若點P是AE上一個動點,則PF+PB的最小值為_____.16.如圖,以扇形OAB的頂點O為原點,半徑OB所在的直線為x軸,建立平面直角坐標系,點B的坐標為(2,0),若拋物線與扇形OAB的邊界總有兩個公共點,則實數(shù)k的取值范圍是.17.如圖,在△ABC中,∠C=90°,D是AC上一點,DE⊥AB于點E,若AC=8,BC=6,DE=3,則AD的長為________.18.下圖是在正方形網(wǎng)格中按規(guī)律填成的陰影,根據(jù)此規(guī)律,則第n個圖中陰影部分小正方形的個數(shù)是.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)在圍棋盒中有x顆黑色棋子和y顆白色棋子,從盒中隨機地取出一個棋子,如果它是黑色棋子的概率是;如果往盒中再放進10顆黑色棋子,則取得黑色棋子的概率變?yōu)椋髕和y的值.20.(6分)如圖,已知∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE與BD相交于點O.求證:EC=ED.21.(6分)如圖所示,平行四邊形形ABCD中,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).(1)求證:四邊形BEDF是平行四邊形;(2)請?zhí)砑右粋€條件使四邊形BEDF為菱形.22.(8分)計算.23.(8分)如圖,直線與軸交于點,與軸交于點,且與雙曲線的一個交點為,將直線在軸下方的部分沿軸翻折,得到一個“”形折線的新函數(shù).若點是線段上一動點(不包括端點),過點作軸的平行線,與新函數(shù)交于另一點,與雙曲線交于點.(1)若點的橫坐標為,求的面積;(用含的式子表示)(2)探索:在點的運動過程中,四邊形能否為平行四邊形?若能,求出此時點的坐標;若不能,請說明理由.24.(10分)已知:如圖,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以點O為原點,斜邊OA所在直線為x軸,建立平面直角坐標系,以點P(4,0)為圓心,PA長為半徑畫圓,⊙P與x軸的另一交點為N,點M在⊙P上,且滿足∠MPN=60°.⊙P以每秒1個單位長度的速度沿x軸向左運動,設(shè)運動時間為ts,解答下列問題:(發(fā)現(xiàn))(1)的長度為多少;(2)當t=2s時,求扇形MPN(陰影部分)與Rt△ABO重疊部分的面積.(探究)當⊙P和△ABO的邊所在的直線相切時,求點P的坐標.(拓展)當與Rt△ABO的邊有兩個交點時,請你直接寫出t的取值范圍.25.(10分)如圖,分別以線段AB兩端點A,B為圓心,以大于AB長為半徑畫弧,兩弧交于C,D兩點,作直線CD交AB于點M,DE∥AB,BE∥CD.(1)判斷四邊形ACBD的形狀,并說明理由;(2)求證:ME=AD.26.(12分)某校為選拔一名選手參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,經(jīng)研究,按圖所示的項目和權(quán)數(shù)對選拔賽參賽選手進行考評(因排版原因統(tǒng)計圖不完整).下表是李明、張華在選拔賽中的得分情況:項目選手服裝普通話主題演講技巧李明85708085張華90757580結(jié)合以上信息,回答下列問題:求服裝項目的權(quán)數(shù)及普通話項目對應(yīng)扇形的圓心角大?。磺罄蠲髟谶x拔賽中四個項目所得分數(shù)的眾數(shù)和中位數(shù);根據(jù)你所學的知識,幫助學校在李明、張華兩人中選擇一人參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,并說明理由.27.(12分)如圖,BD是△ABC的角平分線,點E,F(xiàn)分別在BC,AB上,且DE∥AB,BE=AF.(1)求證:四邊形ADEF是平行四邊形;(2)若∠ABC=60°,BD=6,求DE的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】過點作,∵,∴,,∴為等腰直角三角形,,,∵為等邊三角形,∴,∴.∴.故選C.2、A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,則cosB==,故選A3、C【解析】

∵四邊相等的四邊形一定是菱形,∴①正確;∵順次連接矩形各邊中點形成的四邊形一定是菱形,∴②錯誤;∵對角線相等的平行四邊形才是矩形,∴③錯誤;∵經(jīng)過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分,∴④正確;其中正確的有2個,故選C.考點:中點四邊形;平行四邊形的性質(zhì);菱形的判定;矩形的判定與性質(zhì);正方形的判定.4、C【解析】

根據(jù)二次函數(shù)的定義及拋物線與x軸有交點,即可得出關(guān)于m的一元一次不等式組,解之即可得出m的取值范圍.【詳解】解:∵拋物線和軸有交點,,解得:且.故選.【點睛】本題考查了拋物線與x軸的交點、二次函數(shù)的定義以及解一元一次不等式組,牢記“當時,拋物線與x軸有交點是解題的關(guān)鍵.5、A【解析】

可設(shè)1本筆記本的單價為x元,1支筆的單價為y元,由題意可得等量關(guān)系:①3本筆記本的費用+2支筆的費用=19元,②1本筆記本的費用﹣1支筆的費用=3元,根據(jù)等量關(guān)系列出方程組,再求解即可.【詳解】設(shè)1本筆記本的單價為x元,1支筆的單價為y元,依題意有:,解得:.故1本筆記本的單價為5元,1支筆的單價為2元.故選A.【點睛】本題考查了二元一次方程組的應(yīng)用,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系設(shè)出未知數(shù),列出方程組.6、B【解析】

由整數(shù)指數(shù)冪和分式的運算的法則計算可得答案.【詳解】A項,根據(jù)單項式的減法法則可得:5ab-ab=4ab,故A項錯誤;B項,根據(jù)“同底數(shù)冪相除,底數(shù)不變,指數(shù)相減”可得:a6÷a2=a4,故B項正確;C項,根據(jù)分式的加法法則可得:,故C項錯誤;D項,根據(jù)“積的乘方等于乘方的積”可得:,故D項錯誤;故本題正確答案為B.【點睛】冪的運算法則:(1)同底數(shù)冪的乘法:(m、n都是正整數(shù))(2)冪的乘方:(m、n都是正整數(shù))(3)積的乘方:(n是正整數(shù))(4)同底數(shù)冪的除法:(a≠0,m、n都是正整數(shù),且m>n)(5)零次冪:(a≠0)(6)負整數(shù)次冪:(a≠0,p是正整數(shù)).7、C【解析】

作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根據(jù)角平分線的性質(zhì)得到OD=OE=OF,根據(jù)三角形的面積公式計算即可.【詳解】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,

∵三條角平分線交于點O,OF⊥AB,OE⊥AC,OD⊥BC,

∴OD=OE=OF,

∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,

故選C.【點睛】考查的是角平分線的性質(zhì),掌握角的平分線上的點到角的兩邊的距離相等是解題的關(guān)鍵.8、B【解析】由圖可知,甲用4小時走完全程40km,可得速度為10km/h;乙比甲晚出發(fā)一小時,用1小時走完全程,可得速度為40km/h.故選B9、C【解析】觀察可得,點P在線段AC上由A到C的運動中,線段PE逐漸變短,當EP⊥AC時,PE最短,過垂直這個點后,PE又逐漸變長,當AP=m時,點P停止運動,符合圖像的只有線段PE,故選C.點睛:本題考查了動點問題的函數(shù)圖象,對于此類問題來說是典型的數(shù)形結(jié)合,圖象應(yīng)用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.10、A【解析】

利用三角形內(nèi)角和求∠B,然后根據(jù)相似三角形的性質(zhì)求解.【詳解】解:根據(jù)三角形內(nèi)角和定理可得:∠B=30°,根據(jù)相似三角形的性質(zhì)可得:∠B′=∠B=30°.故選:A.【點睛】本題考查相似三角形的性質(zhì),掌握相似三角形對應(yīng)角相等是本題的解題關(guān)鍵.11、B【解析】

作AC⊥y軸于C,ADx軸,BD⊥y軸,它們相交于D,有A點坐標得到AC=1,OC=1,由于AO繞點A逆時針旋轉(zhuǎn)90°,點O的對應(yīng)B點,所以相當是把△AOC繞點A逆時針旋轉(zhuǎn)90°得到△ABD,根據(jù)旋轉(zhuǎn)的性質(zhì)得AD=AC=1,BD=OC=1,原式可得到B點坐標為(2,1),然后根據(jù)反比例函數(shù)圖象上點的坐標特征計算k的值.【詳解】作AC⊥y軸于C,AD⊥x軸,BD⊥y軸,它們相交于D,如圖,∵A點坐標為(1,1),∴AC=1,OC=1.∵AO繞點A逆時針旋轉(zhuǎn)90°,點O的對應(yīng)B點,即把△AOC繞點A逆時針旋轉(zhuǎn)90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B點坐標為(2,1),∴k=2×1=2.故選B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)y=kx(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k12、C【解析】利用正方形的性質(zhì)結(jié)合銳角三角函數(shù)關(guān)系得出正方形的邊長,進而得出變化規(guī)律即可得出答案.解:如圖所示:∵正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,則B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的邊長是:()n﹣1.則正方形A2017B2017C2017D2017的邊長是:()2.故選C.“點睛”此題主要考查了正方形的性質(zhì)以及銳角三角函數(shù)關(guān)系,得出正方形的邊長變化規(guī)律是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】試題分析:根據(jù)點D為AB的中點可得:CD為直角三角形斜邊上的中線,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AB=2CD=6,根據(jù)E、F分別為中點可得:EF為△ABC的中位線,根據(jù)中位線的性質(zhì)可得:EF=AB=3.考點:(1)、直角三角形的性質(zhì);(2)、中位線的性質(zhì)14、【解析】

無理數(shù)包括三方面的數(shù):①含π的,②一些開方開不盡的根式,③一些有規(guī)律的數(shù),根據(jù)以上內(nèi)容判斷即可.【詳解】解:=4,是有理數(shù),﹣3、、0都是有理數(shù),是無理數(shù).故答案為:.【點睛】本題考查了對無理數(shù)的定義的理解和運用,注意:無理數(shù)是指無限不循環(huán)小數(shù),包括三方面的數(shù):①含π的,②一些開方開不盡的根式,③一些有規(guī)律的數(shù).15、【解析】

如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四邊形ADEF是菱形,推出F,D關(guān)于直線AE對稱,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是線段BD的長.【詳解】如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四邊形ADEF是菱形,∴F,D關(guān)于直線AE對稱,∴PF=PD,∴PF+PB=PA+PB,∵PD+PB≥BD,∴PF+PB的最小值是線段BD的長,∵∠CAB=180°-105°-45°=30°,設(shè)AF=EF=AD=x,則DH=EG=x,F(xiàn)G=x,∵∠EGB=45°,EG⊥BG,∴EG=BG=x,∴x+x+x=3+,∴x=2,∴DH=1,BH=3,∴BD==,∴PF+PB的最小值為,故答案為.【點睛】本題考查軸對稱-最短問題,菱形的性質(zhì)等知識,解題的關(guān)鍵是學會用轉(zhuǎn)化的思想思考問題,學會利用軸對稱解決最短問題.16、-2<k<?!窘馕觥?/p>

由圖可知,∠AOB=45°,∴直線OA的解析式為y=x,聯(lián)立,消掉y得,,由解得,.∴當時,拋物線與OA有一個交點,此交點的橫坐標為1.∵點B的坐標為(2,0),∴OA=2,∴點A的坐標為().∴交點在線段AO上.當拋物線經(jīng)過點B(2,0)時,,解得k=-2.∴要使拋物線與扇形OAB的邊界總有兩個公共點,實數(shù)k的取值范圍是-2<k<.【詳解】請在此輸入詳解!17、1【解析】

如圖,由勾股定理可以先求出AB的值,再證明△AED∽△ACB,根據(jù)相似三角形的性質(zhì)就可以求出結(jié)論.【詳解】在Rt△ABC中,由勾股定理.得AB==10,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴,∴,∴AD=1.故答案為1【點睛】本題考查了勾股定理的運用,相似三角形的判定及性質(zhì)的運用,解答時求出△AED∽△ACB是解答本題的關(guān)鍵.18、n1+n+1.【解析】試題解析:仔細觀察圖形知道:每一個陰影部分由左邊的正方形和右邊的矩形構(gòu)成,分別為:第一個圖有:1+1+1個,第二個圖有:4+1+1個,第三個圖有:9+3+1個,…第n個為n1+n+1.考點:規(guī)律型:圖形的變化類.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、x=15,y=1【解析】

根據(jù)概率的求法:在圍棋盒中有x顆黑色棋子和y顆白色棋子,共x+y顆棋子,如果它是黑色棋子的概率是,有成立.化簡可得y與x的函數(shù)關(guān)系式;

(2)若往盒中再放進10顆黑色棋子,在盒中有10+x+y顆棋子,則取得黑色棋子的概率變?yōu)?,結(jié)合(1)的條件,可得,解可得x=15,y=1.【詳解】依題意得,,化簡得,,解得,.,檢驗當x=15,y=1時,,,∴x=15,y=1是原方程的解,經(jīng)檢驗,符合題意.答:x=15,y=1.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.20、見解析【解析】

由∠1=∠2,可得∠BED=∠AEC,根據(jù)利用ASA可判定△BED≌△AEC,然后根據(jù)全等三角形的性質(zhì)即可得證.【詳解】解:∵∠1=∠2,∴∠1+∠AED=∠2+∠AED,即∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(ASA),∴ED=EC.【點睛】本題主要考查全等三角形的判定和性質(zhì),掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(zhì)(即全等三角形的對應(yīng)邊相等、對應(yīng)角相等)是解題的關(guān)鍵.21、見解析【解析】

(1)根據(jù)平行四邊形的性質(zhì)可得AB∥DC,OB=OD,由平行線的性質(zhì)可得∠OBE=∠ODF,利用ASA判定△BOE≌△DOF,由全等三角形的性質(zhì)可得EO=FO,根據(jù)對角線互相平分的四邊形是平行四邊形即可判定四邊形BEDF是平行四邊形;(2)添加EF⊥BD(本題添加的條件不唯一),根據(jù)對角線互相垂直的平行四邊形為菱形即可判定平行四邊形BEDF為菱形.【詳解】(1)∵四邊形ABCD是平行四邊形,O是BD的中點,∴AB∥DC,OB=OD,∴∠OBE=∠ODF,又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四邊形BEDF是平行四邊形;(2)EF⊥BD.∵四邊形BEDF是平行四邊形,∵EF⊥BD,∴平行四邊形BEDF是菱形.【點睛】本題考查了平行四邊形的性質(zhì)與判定、菱形的判定,熟知平行四邊形的性質(zhì)與判定及菱形的判定方法是解決問題的關(guān)鍵.22、【解析】分析:先計算,再做除法,結(jié)果化為整式或最簡分式.詳解:.點睛:本題考查了分式的混合運算.解題過程中注意運算順序.解決本題亦可先把除法轉(zhuǎn)化成乘法,利用乘法對加法的分配律后再求和.23、(1);(2)不能成為平行四邊形,理由見解析【解析】

(1)將點B坐標代入一次函數(shù)上可得出點B的坐標,由點B的坐標,利用待定系數(shù)法可求出反比例函數(shù)解析式,根據(jù)點的坐標為,可以判斷出,再由點P的橫坐標可得出點P的坐標是,結(jié)合PD∥x軸可得出點D的坐標,再利用三角形的面積公式即可用含的式子表示出△MPD的面積;

(2)當P為BM的中點時,利用中點坐標公式可得出點P的坐標,結(jié)合PD∥x軸可得出點D的坐標,由折疊的性質(zhì)可得出直線MN的解析式,利用一次函數(shù)圖象上點的坐標特征可得出點C的坐標,由點P,C,D的坐標可得出PD≠PC,由此即可得出四邊形BDMC不能成為平行四邊形.【詳解】解:(1)∵點在直線上,∴.∵點在的圖像上,∴,∴.設(shè),則.∵∴.記的面積為,∴.(2)當點為中點時,其坐標為,∴.∵直線在軸下方的部分沿軸翻折得表示的函數(shù)表達式是:,∴,∴,∴與不能互相平分,∴四邊形不能成為平行四邊形.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征、待定系數(shù)法求反比例函數(shù)解析式、反比例函數(shù)圖象上點的坐標特征、三角形的面積、折疊的性質(zhì)以及平行四邊形的判定,解題的關(guān)鍵是:(1)利用一次(反比例)函數(shù)圖象上點的坐標特征,找出點P,M,D的坐標;(2)利用平行四邊形的對角線互相平分,找出四邊形BDMC不能成為平行四邊形.24、【發(fā)現(xiàn)】(3)的長度為;(2)重疊部分的面積為;【探究】:點P的坐標為;或或;【拓展】t的取值范圍是或,理由見解析.【解析】

發(fā)現(xiàn):(3)先確定出扇形半徑,進而用弧長公式即可得出結(jié)論;(2)先求出PA=3,進而求出PQ,即可用面積公式得出結(jié)論;探究:分圓和直線AB和直線OB相切,利用三角函數(shù)即可得出結(jié)論;拓展:先找出和直角三角形的兩邊有兩個交點時的分界點,即可得出結(jié)論.【詳解】[發(fā)現(xiàn)](3)∵P(2,0),∴OP=2.∵OA=3,∴AP=3,∴的長度為.故答案為;(2)設(shè)⊙P半徑為r,則有r=2﹣3=3,當t=2時,如圖3,點N與點A重合,∴PA=r=3,設(shè)MP與AB相交于點Q.在Rt△ABO中,∵∠OAB=30°,∠MPN=60°.∵∠PQA=90°,∴PQPA,∴AQ=AP×cos30°,∴S重疊部分=S△APQPQ×AQ.即重疊部分的面積為.[探究]①如圖2,當⊙P與直線AB相切于點C時,連接PC,則有PC⊥AB,PC=r=3.∵∠OAB=30°,∴AP=2,∴OP=OA﹣AP=3﹣2=3;∴點P的坐標為(3,0);②如圖3,當⊙P與直線OB相切于點D時,連接PD,則有PD⊥OB,PD=r=3,∴PD∥AB,∴∠OPD=∠OAB=30°,∴cos∠OPD,∴OP,∴點P的坐標為(,0);③如圖2,當⊙P與直線OB相切于點E時,連接PE,則有PE⊥OB,同②可得:OP;∴點P的坐標為(,0);[拓展]t的取值范圍是2<t≤3,2≤t<4,理由:如圖4,當點N運動到與點A重合時,與Rt△ABO的邊有一個公共點,此時t=2;當t>2,直到⊙P運動到與AB相切時,由探究①得:OP=3,∴t3,與Rt△ABO的邊有兩個公共點,∴2<t≤3.如圖6,當⊙P運動到PM與OB重合時,與Rt△ABO的邊有兩個公共點,此時t=2;直到⊙P運動到點N與點O重合時,與Rt△ABO的邊有一個公共點,此時t=4;∴2≤t<4,即:t的取值范圍是2<t≤3,2≤t<4.【點睛】本題是圓的綜合題,主要考查了弧長公式,切線的性質(zhì),銳角三角函數(shù),三角形面積公式,作出圖形是解答本題的關(guān)鍵.25、(1)四邊形ACBD是菱形;理由見解析;(2)證明見解析.【解析】

(1)根據(jù)題意得出,即可得出結(jié)論;(2)先證明四邊形是平行四邊形,再由菱形的性質(zhì)得出,證明四邊形是矩形,得出對角線相等,即可得出結(jié)論.【詳解】(1)解:四邊形ACBD是菱形;理由如下:根據(jù)題意得:AC=BC=BD=AD,∴四邊形ACBD是菱形(四條邊相等的四邊形是菱形);(2)證明:∵DE∥AB,BE∥CD,∴四邊形BEDM是平行四邊形,∵四邊形ACBD是菱形,∴AB⊥CD,∴∠BMD=90°,∴四邊形ACBD是矩形,∴ME=BD,∵AD=B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論