




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南周口地區(qū)洪山鄉(xiāng)聯合校2024-2025學年初三下學期月考數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.從﹣1,2,3,﹣6這四個數中任選兩數,分別記作m,n,那么點(m,n)在函數y=圖象上的概率是()A. B. C. D.2.如圖,右側立體圖形的俯視圖是()A.B.C.D.3.如圖,正方形ABCD內接于圓O,AB=4,則圖中陰影部分的面積是()A. B. C. D.4.如圖,在△ABC中,DE∥BC交AB于D,交AC于E,錯誤的結論是(
).A. B. C. D.5.如圖所示,在平面直角坐標系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點B順時針旋轉180°,得到△BP2C;把△BP2C繞點C順時針旋轉180°,得到△CP3D,依此類推,則旋轉第2017次后,得到的等腰直角三角形的直角頂點P2018的坐標為()A.(4030,1) B.(4029,﹣1)C.(4033,1) D.(4035,﹣1)6.如圖,△ABC在平面直角坐標系中第二象限內,頂點A的坐標是(﹣2,3),先把△ABC向右平移6個單位得到△A1B1C1,再作△A1B1C1關于x軸對稱圖形△A2B2C2,則頂點A2的坐標是()A.(4,﹣3) B.(﹣4,3) C.(5,﹣3) D.(﹣3,4)7.如圖,在△ABC中,AD是BC邊的中線,∠ADC=30°,將△ADC沿AD折疊,使C點落在C′的位置,若BC=4,則BC′的長為()A.2 B.2 C.4 D.38.如圖的幾何體是由一個正方體切去一個小正方體形成的,它的主視圖是()A. B. C. D.9.解分式方程﹣3=時,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=410.下列運算正確的是()A.(a﹣3)2=a2﹣9 B.()﹣1=2 C.x+y=xy D.x6÷x2=x3二、填空題(共7小題,每小題3分,滿分21分)11.某學校要購買電腦,A型電腦每臺5000元,B型電腦每臺3000元,購買10臺電腦共花費34000元設購買A型電腦x臺,購買B型電腦y臺,則根據題意可列方程組為______.12.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段的長為________.13.一個扇形的弧長是,它的面積是,這個扇形的圓心角度數是_____.14.如圖,在4×4的方格紙中(共有16個小方格),每個小方格都是邊長為1的正方形.O、A、B分別是小正方形的頂點,則扇形OAB周長等于_____.(結果保留根號及π).15.一個正n邊形的中心角等于18°,那么n=_____.16.邊長為3的正方形網格中,⊙O的圓心在格點上,半徑為3,則tan∠AED=_______.17.如圖是一個幾何體的三視圖,若這個幾何體的體積是36,則它的表面積是_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,在四邊形ABCD中,E是AB的中點,AD//EC,∠AED=∠B.求證:△AED≌△EBC;當AB=6時,求CD的長.19.(5分)如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺的A處測得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測得兩建筑物之間的距離BC是28米,請你幫助小明求出建筑物CD的高度(精確到1米).20.(8分)有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),歷時7分鐘同時到達C點,乙機器人始終以60米/分的速度行走,如圖是甲、乙兩機器人之間的距離y(米)與他們的行走時間x(分鐘)之間的函數圖象,請結合圖象,回答下列問題:(1)A、B兩點之間的距離是米,甲機器人前2分鐘的速度為米/分;(2)若前3分鐘甲機器人的速度不變,求線段EF所在直線的函數解析式;(3)若線段FG∥x軸,則此段時間,甲機器人的速度為米/分;(4)求A、C兩點之間的距離;(5)若前3分鐘甲機器人的速度不變,直接寫出兩機器人出發(fā)多長時間相距28米.21.(10分)如圖1,拋物線y1=ax1﹣x+c與x軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GM⊥x軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y1.(1)求拋物線y1的解析式;(1)如圖1,在直線l上是否存在點T,使△TAC是等腰三角形?若存在,請求出所有點T的坐標;若不存在,請說明理由;(3)點P為拋物線y1上一動點,過點P作y軸的平行線交拋物線y1于點Q,點Q關于直線l的對稱點為R,若以P,Q,R為頂點的三角形與△AMG全等,求直線PR的解析式.22.(10分)如圖,BD⊥AC于點D,CE⊥AB于點E,AD=AE.求證:BE=CD.23.(12分)石獅泰禾某童裝專賣店在銷售中發(fā)現,一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當的降價措施,以擴大銷售量,增加利潤,經市場調查發(fā)現,如果每件童裝降價1元,那么平均可多售出2件.設每件童裝降價x元時,每天可銷售______件,每件盈利______元;(用x的代數式表示)每件童裝降價多少元時,平均每天贏利1200元.要想平均每天贏利2000元,可能嗎?請說明理由.24.(14分)先化簡,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與點(m,n)恰好在反比例函數y=圖象上的情況,再利用概率公式即可求得答案.【詳解】解:畫樹狀圖得:∵共有12種等可能的結果,點(m,n)恰好在反比例函數y=圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(m,n)在函數y=圖象上的概率是:.故選B.此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數與總情況數之比.2、A【解析】試題分析:從上邊看立體圖形得到俯視圖即可得右側立體圖形的俯視圖是,故選A.考點:簡單組合體的三視圖.3、B【解析】
連接OA、OB,利用正方形的性質得出OA=ABcos45°=2,根據陰影部分的面積=S⊙O-S正方形ABCD列式計算可得.【詳解】解:連接OA、OB,∵四邊形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×=2,所以陰影部分的面積=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故選B.本題主要考查扇形的面積計算,解題的關鍵是熟練掌握正方形的性質和圓的面積公式.4、D【解析】
根據平行線分線段成比例定理及相似三角形的判定與性質進行分析可得出結論.【詳解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正確;D錯誤;故選D.考點:1.平行線分線段成比例;2.相似三角形的判定與性質.5、D【解析】
根據題意可以求得P1,點P2,點P3的坐標,從而可以發(fā)現其中的變化的規(guī)律,從而可以求得P2018的坐標,本題得以解決.【詳解】解:由題意可得,
點P1(1,1),點P2(3,-1),點P3(5,1),
∴P2018的橫坐標為:2×2018-1=4035,縱坐標為:-1,
即P2018的坐標為(4035,-1),
故選:D.本題考查了點的坐標變化規(guī)律,解答本題的關鍵是發(fā)現各點的變化規(guī)律,求出相應的點的坐標.6、A【解析】
直接利用平移的性質結合軸對稱變換得出對應點位置.【詳解】如圖所示:頂點A2的坐標是(4,-3).故選A.此題主要考查了軸對稱變換和平移變換,正確得出對應點位置是解題關鍵.7、A【解析】連接CC′,∵將△ADC沿AD折疊,使C點落在C′的位置,∠ADC=30°,∴∠ADC′=∠ADC=30°,CD=C′D,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等邊三角形,∴∠DC′C=60°,∵在△ABC中,AD是BC邊的中線,即BD=CD,∴C′D=BD,∴∠DBC′=∠DC′B=∠CDC′=30°,∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC?cos∠DBC′=4×=2,故選A.【點睛】本題考查了折疊的性質、等邊三角形的判定與性質、等腰三角形的性質、直角三角形的性質以及三角函數等知識,準確添加輔助線,掌握折疊前后圖形的對應關系是解題的關鍵.8、D【解析】試題分析:根據三視圖的法則可知B為俯視圖,D為主視圖,主視圖為一個正方形.9、B【解析】
方程兩邊同時乘以(x-2),轉化為整式方程,由此即可作出判斷.【詳解】方程兩邊同時乘以(x-2),得1﹣3(x﹣2)=﹣4,故選B.本題考查了解分式方程,利用了轉化的思想,熟練掌握解分式方程的一般步驟以及注意事項是解題的關鍵.10、B【解析】分析:根據完全平方公式、負整數指數冪,合并同類項以及同底數冪的除法的運算法則進行計算即可判斷出結果.詳解:A.(a﹣3)2=a2﹣6a+9,故該選項錯誤;B.()﹣1=2,故該選項正確;C.x與y不是同類項,不能合并,故該選項錯誤;D.x6÷x2=x6-2=x4,故該選項錯誤.故選B.點睛:可不是主要考查了完全平方公式、負整數指數冪,合并同類項以及同度數冪的除法的運算,熟記它們的運算法則是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】試題解析:根據題意得:故答案為12、【解析】已知BC=8,AD是中線,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根據相似三角形的性質可得,即可得AC2=CD?BC=4×8=32,解得AC=4.13、120°【解析】
設扇形的半徑為r,圓心角為n°.利用扇形面積公式求出r,再利用弧長公式求出圓心角即可.【詳解】設扇形的半徑為r,圓心角為n°.由題意:,∴r=4,∴∴n=120,故答案為120°本題考查扇形的面積的計算,弧長公式等知識,解題的關鍵是掌握基本知識.14、π+4【解析】根據正方形的性質,得扇形所在的圓心角是90°,扇形的半徑是2.解:根據圖形中正方形的性質,得∠AOB=90°,OA=OB=2.∴扇形OAB的弧長等于π.15、20【解析】
由正n邊形的中心角為18°,可得方程18n=360,解方程即可求得答案.【詳解】∵正n邊形的中心角為18°,∴18n=360,∴n=20.故答案為20.本題考查的知識點是正多邊形和圓,解題的關鍵是熟練的掌握正多邊形和圓.16、【解析】
根據同弧或等弧所對的圓周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值.【詳解】解:∵∠AED=∠ABD(同弧所對的圓周角相等),∴tan∠AED=tanB=.故答案為:.本題主要考查了圓周角定理、銳角三角函數的定義.解答網格中的角的三角函數值時,一般是將所求的角與直角三角形中的等角聯系起來,通過解直角三角形中的三角函數值來解答問題.17、2【解析】分析:∵由主視圖得出長方體的長是6,寬是2,這個幾何體的體積是16,∴設高為h,則6×2×h=16,解得:h=1.∴它的表面積是:2×1×2+2×6×2+1×6×2=2.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)CD=3【解析】分析:(1)根據二直線平行同位角相等得出∠A=∠BEC,根據中點的定義得出AE=BE,然后由ASA判斷出△AED≌△EBC;(2)根據全等三角形對應邊相等得出AD=EC,然后根據一組對邊平行且相等的四邊形是平行四邊形得出四邊形AECD是平行四邊形,根據平行四邊形的對邊相等得出答案.詳解:(1)證明:∵AD∥EC∴∠A=∠BEC∵E是AB中點,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四邊形AECD是平行四邊形∴CD=AE∵AB=6∴CD=AB=3點睛:本題考查全等三角形的判定和性質、平行四邊形的判定和性質等知識,解題的關鍵是正確尋找全等三角形解決問題,屬于中考??碱}型.19、39米【解析】
過點A作AE⊥CD,垂足為點E,在Rt△ADE中,利用三角函數求出的長,在Rt△ACE中,求出的長即可得.【詳解】解:過點A作AE⊥CD,垂足為點E,由題意得,AE=BC=28,∠EAD=25°,∠EAC=43°,在Rt△ADE中,∵,∴,在Rt△ACE中,∵,∴,∴(米),答:建筑物CD的高度約為39米.20、(1)距離是70米,速度為95米/分;(2)y=35x﹣70;(3)速度為60米/分;(4)=490米;(5)兩機器人出發(fā)1.2分或2.1分或4.6分相距21米.【解析】
(1)當x=0時的y值即為A、B兩點之間的距離,由圖可知當=2時,甲追上了乙,則可知(甲速度-乙速度)×時間=A、B兩點之間的距離;(2)由題意求解E、F兩點坐標,再用待定系數法求解直線解析式即可;(3)由圖可知甲、乙速度相同;(4)由乙的速度和時間可求得BC之間的距離,再加上AB之間的距離即為AC之間的距離;(5)分0-2分鐘、2-3分鐘和4-7分鐘三段考慮.【詳解】解:(1)由圖象可知,A、B兩點之間的距離是70米,甲機器人前2分鐘的速度為:(70+60×2)÷2=95米/分;(2)設線段EF所在直線的函數解析式為:y=kx+b,∵1×(95﹣60)=35,∴點F的坐標為(3,35),則2k+b=03k+b=35,解得k=35∴線段EF所在直線的函數解析式為y=35x﹣70;(3)∵線段FG∥x軸,∴甲、乙兩機器人的速度都是60米/分;(4)A、C兩點之間的距離為70+60×7=490米;(5)設前2分鐘,兩機器人出發(fā)x分鐘相距21米,由題意得,60x+70﹣95x=21,解得,x=1.2,前2分鐘﹣3分鐘,兩機器人相距21米時,由題意得,35x﹣70=21,解得,x=2.1.4分鐘﹣7分鐘,直線GH經過點(4,35)和點(7,0),設線段GH所在直線的函數解析式為:y=kx+b,則,4k+b=357k+b=0,解得k=-則直線GH的方程為y=-353x+當y=21時,解得x=4.6,答:兩機器人出發(fā)1.2分或2.1分或4.6分相距21米.本題考查了一次函數的應用,讀懂圖像是解題關鍵..21、(1)y1=-x1+x-;(1)存在,T(1,),(1,),(1,﹣);(3)y=﹣x+或y=﹣.【解析】
(1)應用待定系數法求解析式;(1)設出點T坐標,表示△TAC三邊,進行分類討論;(3)設出點P坐標,表示Q、R坐標及PQ、QR,根據以P,Q,R為頂點的三角形與△AMG全等,分類討論對應邊相等的可能性即可.【詳解】解:(1)由已知,c=,將B(1,0)代入,得:a﹣=0,解得a=﹣,拋物線解析式為y1=x1-x+,∵拋物線y1平移后得到y1,且頂點為B(1,0),∴y1=﹣(x﹣1)1,即y1=-x1+x-;(1)存在,如圖1:拋物線y1的對稱軸l為x=1,設T(1,t),已知A(﹣3,0),C(0,),過點T作TE⊥y軸于E,則TC1=TE1+CE1=11+()1=t1﹣t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=,當TC=AC時,t1﹣t+=,解得:t1=,t1=;當TA=AC時,t1+16=,無解;當TA=TC時,t1﹣t+=t1+16,解得t3=﹣;當點T坐標分別為(1,),(1,),(1,﹣)時,△TAC為等腰三角形;(3)如圖1:設P(m,),則Q(m,),∵Q、R關于x=1對稱∴R(1﹣m,),①當點P在直線l左側時,PQ=1﹣m,QR=1﹣1m,∵△PQR與△AMG全等,∴當PQ=GM且QR=AM時,m=0,∴P(0,),即點P、C重合,∴R(1,﹣),由此求直線PR解析式為y=﹣x+,當PQ=AM且QR=GM時,無解;②當點P在直線l右側時,同理:PQ=m﹣1,QR=1m﹣1,則P(1,﹣),R(0,﹣),PQ解析式為:y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現代藥物遞送系統的研究試題及答案
- 委托代理招生協議書
- 電氣安全教育培訓講義
- 2025至2030年鈣果種苗項目投資價值分析報告
- 2305綜采工作面排水系統的優(yōu)化與應用
- 2025至2030年語音報號電話機項目投資價值分析報告
- 2024年石河子大學醫(yī)學院教師招聘考試真題
- 2024年黔南州惠水縣公益性崗位招聘考試真題
- 2025至2030年航空客運物流管理系統項目投資價值分析報告
- 2024年金華金義綠動產業(yè)園區(qū)建設有限公司招聘項目制人員考試真題
- 瓶裝液化氣送氣工培訓
- 【MOOC】中醫(yī)與辨證-暨南大學 中國大學慕課MOOC答案
- 零星維修工程 投標方案(技術方案)
- 風電制氫制甲醇一體化示范制氫制甲醇項目可行性研究報告寫作模板-申批立項
- 2024年教科版(廣州版)英語五年級上冊期中模擬測試卷(無答案)
- 2024年人力資源行業(yè)變革:人工智能在招聘中的應用
- 2024-2030年中國玩偶行業(yè)發(fā)展前景預測及競爭力策略分析報告
- 上門按摩企業(yè)標準操作實務白皮書-愛尚往約企業(yè)標準開源手冊 2024
- 吉利并購沃爾沃績效分析
- DB11T 1028-2021 民用建筑節(jié)能門窗工程技術標準
- GB/T 32151.25-2024溫室氣體排放核算與報告要求第25部分:食品、煙草及酒、飲料和精制茶企業(yè)
評論
0/150
提交評論