版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省十校2024-2025學(xué)年高三下學(xué)期適應(yīng)性訓(xùn)練(四)數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的大致圖象為A. B.C. D.2.函數(shù)在的圖象大致為()A. B.C. D.3.元代數(shù)學(xué)家朱世杰的數(shù)學(xué)名著《算術(shù)啟蒙》是中國古代代數(shù)學(xué)的通論,其中關(guān)于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.下圖是源于其思想的一個程序圖,若,,則輸出的()A.3 B.4 C.5 D.64.已知正三角形的邊長為2,為邊的中點,、分別為邊、上的動點,并滿足,則的取值范圍是()A. B. C. D.5.已知,,分別為內(nèi)角,,的對邊,,,的面積為,則()A. B.4 C.5 D.6.已知函數(shù),則不等式的解集是()A. B. C. D.7.復(fù)數(shù)的共軛復(fù)數(shù)為()A. B. C. D.8.設(shè)為等差數(shù)列的前項和,若,,則的最小值為()A. B. C. D.9.已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當(dāng)點C到平面ABE的距離最大時,該四棱錐的體積為()A. B. C. D.110.五行學(xué)說是華夏民族創(chuàng)造的哲學(xué)思想,是華夏文明重要組成部分.古人認為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關(guān)系.若從5類元素中任選2類元素,則2類元素相生的概率為()A. B. C. D.11.在中,,分別為,的中點,為上的任一點,實數(shù),滿足,設(shè)、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.12.已知函數(shù),存在實數(shù),使得,則的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在上單調(diào)遞增,則實數(shù)a值范圍為_________.14.如圖,在矩形中,,是的中點,將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為__________.15.設(shè)為定義在上的偶函數(shù),當(dāng)時,(為常數(shù)),若,則實數(shù)的值為______.16.已知集合,則____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),若的解集為.(1)求的值;(2)若正實數(shù),,滿足,求證:.18.(12分)已知函數(shù)(,),且對任意,都有.(Ⅰ)用含的表達式表示;(Ⅱ)若存在兩個極值點,,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點的個數(shù),并說明理由.19.(12分)已知拋物線的焦點為,直線交于兩點(異于坐標(biāo)原點O).(1)若直線過點,,求的方程;(2)當(dāng)時,判斷直線是否過定點,若過定點,求出定點坐標(biāo);若不過定點,說明理由.20.(12分)設(shè)數(shù)列,其前項和,又單調(diào)遞增的等比數(shù)列,,.(Ⅰ)求數(shù)列,的通項公式;(Ⅱ)若,求數(shù)列的前n項和,并求證:.21.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的前項和為,證明:.22.(10分)某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過度的部分按元/度收費,超過度但不超過度的部分按元/度收費,超過度的部分按元/度收費.(I)求某戶居民用電費用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這戶居民中,今年1月份用電費用不超過元的占,求,的值;(Ⅲ)在滿足(Ⅱ)的條件下,若以這戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點代替,記為該居民用戶1月份的用電費用,求的分布列和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
因為,所以函數(shù)是偶函數(shù),排除B、D,又,排除C,故選A.2.C【解析】
先根據(jù)函數(shù)奇偶性排除B,再根據(jù)函數(shù)極值排除A;結(jié)合特殊值即可排除D,即可得解.【詳解】函數(shù),則,所以為奇函數(shù),排除B選項;當(dāng)時,,所以排除A選項;當(dāng)時,,排除D選項;綜上可知,C為正確選項,故選:C.本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖像,注意奇偶性、單調(diào)性、極值與特殊值的使用,屬于基礎(chǔ)題.3.B【解析】分析:根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個等比數(shù)列,公比為;根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個等比數(shù)列,公比為,根據(jù)每次循環(huán)得到的的值的大小決定循環(huán)的次數(shù)即可.詳解:記執(zhí)行第次循環(huán)時,的值記為有,則有;記執(zhí)行第次循環(huán)時,的值記為有,則有.令,則有,故,故選B.點睛:本題為算法中的循環(huán)結(jié)構(gòu)和數(shù)列通項的綜合,屬于中檔題,解題時注意流程圖中蘊含的數(shù)列關(guān)系(比如相鄰項滿足等比數(shù)列、等差數(shù)列的定義,是否是求數(shù)列的前和、前項積等).4.A【解析】
建立平面直角坐標(biāo)系,求出直線,設(shè)出點,通過,找出與的關(guān)系.通過數(shù)量積的坐標(biāo)表示,將表示成與的關(guān)系式,消元,轉(zhuǎn)化成或的二次函數(shù),利用二次函數(shù)的相關(guān)知識,求出其值域,即為的取值范圍.【詳解】以D為原點,BC所在直線為軸,AD所在直線為軸建系,設(shè),則直線,設(shè)點,所以由得,即,所以,由及,解得,由二次函數(shù)的圖像知,,所以的取值范圍是.故選A.本題主要考查解析法在向量中的應(yīng)用,以及轉(zhuǎn)化與化歸思想的運用.5.D【解析】
由正弦定理可知,從而可求出.通過可求出,結(jié)合余弦定理即可求出的值.【詳解】解:,即,即.,則.,解得.,故選:D.本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數(shù)的基本關(guān)系.本題的關(guān)鍵是通過正弦定理結(jié)合已知條件,得到角的正弦值余弦值.6.B【解析】
由導(dǎo)數(shù)確定函數(shù)的單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】函數(shù),可得,時,,單調(diào)遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.本題主要考查了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性,根據(jù)單調(diào)性解不等式,屬于中檔題.7.D【解析】
直接相乘,得,由共軛復(fù)數(shù)的性質(zhì)即可得結(jié)果【詳解】∵∴其共軛復(fù)數(shù)為.故選:D熟悉復(fù)數(shù)的四則運算以及共軛復(fù)數(shù)的性質(zhì).8.C【解析】
根據(jù)已知條件求得等差數(shù)列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C本小題主要考查等差數(shù)列通項公式和前項和公式的基本量計算,考查等差數(shù)列前項和最值的求法,屬于基礎(chǔ)題.9.B【解析】
過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.設(shè),將表示成關(guān)于的函數(shù),再求函數(shù)的最值,即可得答案.【詳解】過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面平面ABCD,所以平面ABCD,所以.因為底面ABCD是邊長為1的正方形,,所以.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.易證平面平面ABE,所以點H到平面ABE的距離,即為H到EF的距離.不妨設(shè),則,.因為,所以,所以,當(dāng)時,等號成立.此時EH與ED重合,所以,.故選:B.本題考查空間中點到面的距離的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查空間想象能力和運算求解能力,求解時注意輔助線及面面垂直的應(yīng)用.10.A【解析】
列舉出金、木、水、火、土任取兩個的所有結(jié)果共10種,其中2類元素相生的結(jié)果有5種,再根據(jù)古典概型概率公式可得結(jié)果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結(jié)果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結(jié)果,所以2類元素相生的概率為,故選A.本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時,找準(zhǔn)基本事件個數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.11.D【解析】
根據(jù)三角形中位線的性質(zhì),可得到的距離等于△的邊上高的一半,從而得到,由此結(jié)合基本不等式求最值,得到當(dāng)取到最大值時,為的中點,再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結(jié)果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當(dāng)且僅當(dāng)時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應(yīng)用,考查了基本不等式求最值,屬于中檔題.12.A【解析】
畫出分段函數(shù)圖像,可得,由于,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A本題考查了導(dǎo)數(shù)在函數(shù)性質(zhì)探究中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由在上恒成立可求解.【詳解】,令,∵,∴,又,,從而,令,問題等價于在時恒成立,∴,解得.故答案為:.本題考查函數(shù)的單調(diào)性,解題關(guān)鍵是問題轉(zhuǎn)化為恒成立,利用換元法和二次函數(shù)的性質(zhì)易求解.14.【解析】
根據(jù)題意,畫出空間幾何體,設(shè)的中點分別為,并連接,利用面面垂直的性質(zhì)及所給線段關(guān)系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設(shè)的中點分別為,連接,則,.因為平面平面,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.本題考查了空間幾何體的綜合應(yīng)用,折疊后空間幾何體的線面位置關(guān)系應(yīng)用,空間幾何體外接球的性質(zhì)及體積求法,屬于中檔題.15.1【解析】
根據(jù)為定義在上的偶函數(shù),得,再根據(jù)當(dāng)時,(為常數(shù))求解.【詳解】因為為定義在上的偶函數(shù),所以,又因為當(dāng)時,,所以,所以實數(shù)的值為1.故答案為:1本題主要考查函數(shù)奇偶性的應(yīng)用,還考查了運算求解的能力,屬于基礎(chǔ)題.16.【解析】
根據(jù)并集的定義計算即可.【詳解】由集合的并集,知.故答案為:本題考查集合的并集運算,屬于容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)證明見詳解.【解析】
(1)將不等式的解集用表示出來,結(jié)合題中的解集,求出的值;(2)利用柯西不等式證明.【詳解】解:(1),,,因為的解集為,所以,;(2)由(1)由柯西不等式,當(dāng)且僅當(dāng),,,等號成立.本題考查了絕對值不等式的解法,利用柯西不等式證明不等式的問題,屬于中檔題.18.(1)(2)見解析(3)見解析【解析】試題分析:利用賦值法求出關(guān)系,求函數(shù)導(dǎo)數(shù),要求函數(shù)有兩個極值點,只需在內(nèi)有兩個實根,利用一元二次方程的根的分布求出的取值范圍,再根據(jù)函數(shù)圖象和極值的大小判斷零點的個數(shù).試題解析:(Ⅰ)根據(jù)題意:令,可得,所以,經(jīng)驗證,可得當(dāng)時,對任意,都有,所以.(Ⅱ)由(Ⅰ)可知,且,所以,令,要使存在兩個極值點,,則須有有兩個不相等的正數(shù)根,所以或解得或無解,所以的取值范圍,可得,由題意知,令,則.而當(dāng)時,,即,所以在上單調(diào)遞減,所以即時,.(Ⅲ)因為,.令得,.由(Ⅱ)知時,的對稱軸,,,所以.又,可得,此時,在上單調(diào)遞減,上單調(diào)遞增,上單調(diào)遞減,所以最多只有三個不同的零點.又因為,所以在上遞增,即時,恒成立.根據(jù)(2)可知且,所以,即,所以,使得.由,得,又,,所以恰有三個不同的零點:,1,.綜上所述,恰有三個不同的零點.【點睛】利用賦值法求出關(guān)系,利用函數(shù)導(dǎo)數(shù),研究函數(shù)的單調(diào)性,要求函數(shù)有兩個極值點,只需在內(nèi)有兩個實根,利用一元二次方程的根的分布求出的取值范圍,利用函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,再根據(jù)函數(shù)圖象和極值的大小判斷零點的個數(shù)是近年高考壓軸題的熱點.19.(1)(2)直線過定點【解析】
設(shè).(1)由題意知,.設(shè)直線的方程為,由得,則,由根與系數(shù)的關(guān)系可得,所以.由,得,解得.所以拋物線的方程為.(2)設(shè)直線的方程為,由得,由根與系數(shù)的關(guān)系可得,所以,解得.所以直線的方程為,所以時,直線過定點.20.(1),;(2)詳見解析.【解析】
(1)當(dāng)時,,當(dāng)時,,當(dāng)時,也滿足,∴,∵等比數(shù)列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,顯然數(shù)列是遞增數(shù)列,∴,即.)21.(1);(2)見解析.【解析】
(1)令,,利用可求得數(shù)列的通項公式,由此可得出數(shù)列的通項公式;(2)求得,利用裂項相消法求得,進而可得出結(jié)論.【詳解】(1)令,,當(dāng)時,;當(dāng)時,,則,故;(2),.本題考查利用求通項,同時也考查了裂項相消法求和,考查計算能力與推理能力,屬于基礎(chǔ)題.22.(1);(2),;(3)見解析.【解析】試題分析:(1)根據(jù)題意分段表示出函數(shù)解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021年安徽省巢湖市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2022年甘肅省蘭州市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年云南省昭通市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年湖南省懷化市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2022年廣西壯族自治區(qū)崇左市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 淮北市和淮南市2025屆高三第一次質(zhì)量檢測(一模)生物試卷(含答案解析)
- 小學(xué)生學(xué)習(xí)之星事跡材料
- 河北省秦皇島市(2024年-2025年小學(xué)六年級語文)統(tǒng)編版競賽題(上學(xué)期)試卷及答案
- 2025年激光治療機項目立項申請報告
- 廣東省潮州市(2024年-2025年小學(xué)六年級語文)統(tǒng)編版開學(xué)考試((上下)學(xué)期)試卷及答案
- 110kV升壓站構(gòu)支架組立施工方案
- 鋼構(gòu)件應(yīng)力超聲檢測技術(shù)規(guī)程
- -《多軸數(shù)控加工及工藝》(第二版)教案
- 體 育 課 教 學(xué) 評 價 量 表
- 23秋國家開放大學(xué)《漢語國際教育概論》階段測驗1-2+教學(xué)活動1參考答案
- 新員工信息安全課件培訓(xùn)
- 小學(xué)英語-Unit3What would you likePartB Let's talk教學(xué)設(shè)計學(xué)情分析教材分析課后反思
- OA系統(tǒng)功能說明書
- 體檢車技術(shù)規(guī)格要求
- 《Python Web 企業(yè)級項目開發(fā)教程(Django 版)》課后答案
- 比亞迪S7說明書
評論
0/150
提交評論