內蒙古鄂爾多斯康巴什新區(qū)2022年初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第1頁
內蒙古鄂爾多斯康巴什新區(qū)2022年初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第2頁
內蒙古鄂爾多斯康巴什新區(qū)2022年初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第3頁
內蒙古鄂爾多斯康巴什新區(qū)2022年初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第4頁
內蒙古鄂爾多斯康巴什新區(qū)2022年初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

內蒙古鄂爾多斯康巴什新區(qū)2022年初中數(shù)學畢業(yè)考試模擬沖刺卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.完全相同的6個小矩形如圖所示放置,形成了一個長、寬分別為n、m的大矩形,則圖中陰影部分的周長是()A.6(m﹣n) B.3(m+n) C.4n D.4m2.如圖是某蓄水池的橫斷面示意圖,分為深水池和淺水池,如果向這個蓄水池以固定的流量注水,下面能大致表示水的最大深度與時間之間的關系的圖象是()A. B. C. D.3.點是一次函數(shù)圖象上一點,若點在第一象限,則的取值范圍是().A. B. C. D.4.某種超薄氣球表面的厚度約為,這個數(shù)用科學記數(shù)法表示為()A. B. C. D.5.如圖1,在等邊△ABC中,D是BC的中點,P為AB邊上的一個動點,設AP=x,圖1中線段DP的長為y,若表示y與x的函數(shù)關系的圖象如圖2所示,則△ABC的面積為()A.4 B. C.12 D.6.如圖,正方形ABCD的邊長為4,點M是CD的中點,動點E從點B出發(fā),沿BC運動,到點C時停止運動,速度為每秒1個長度單位;動點F從點M出發(fā),沿M→D→A遠動,速度也為每秒1個長度單位:動點G從點D出發(fā),沿DA運動,速度為每秒2個長度單位,到點A后沿AD返回,返回時速度為每秒1個長度單位,三個點的運動同時開始,同時結束.設點E的運動時間為x,△EFG的面積為y,下列能表示y與x的函數(shù)關系的圖象是()A. B.C. D.7.如圖,在已知的△ABC中,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長為半徑作弧,兩弧相交于點M、N;②作直線MN交AB于點D,連接CD,則下列結論正確的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB8.在一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,是白球的概率為(

)A. B. C. D.9.如圖,A、B、C是小正方形的頂點,且每個小正方形的邊長為1,則tan∠BAC的值為()A. B.1 C. D.10.下列計算正確的是()A.x+x=x2B.x·x=2xC.(二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,A、B是雙曲線y=上的兩點,過A點作AC⊥x軸,交OB于D點,垂足為C.若D為OB的中點,△ADO的面積為3,則k的值為_____.12.如圖,點G是△ABC的重心,CG的延長線交AB于D,GA=5cm,GC=4cm,GB=3cm,將△ADG繞點D旋轉180°得到△BDE,△ABC的面積=_____cm1.13.如圖,在正六邊形ABCDEF中,AC于FB相交于點G,則值為_____.14.拋物線向右平移1個單位,再向下平移2個單位所得拋物線是__________.15.如圖,已知,點為邊中點,點在線段上運動,點在線段上運動,連接,則周長的最小值為______.16.當a<0,b>0時.化簡:=_____.三、解答題(共8題,共72分)17.(8分)某市飛翔航模小隊,計劃購進一批無人機.已知3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元.(1)求一臺A型無人機和一臺B型無人機的售價各是多少元?(2)該航模小隊一次購進兩種型號的無人機共50臺,并且B型無人機的數(shù)量不少于A型無人機的數(shù)量的2倍.設購進A型無人機x臺,總費用為y元.①求y與x的關系式;②購進A型、B型無人機各多少臺,才能使總費用最少?18.(8分)在大城市,很多上班族選擇“低碳出行”,電動車和共享單車成為他們的代步工具.某人去距離家8千米的單位上班,騎共享單車雖然比騎電動車多用20分鐘,但卻能強身健體,已知他騎電動車的速度是騎共享單車的1.5倍,求騎共享單車從家到單位上班花費的時間.19.(8分)如圖,已知⊙O經過△ABC的頂點A、B,交邊BC于點D,點A恰為的中點,且BD=8,AC=9,sinC=,求⊙O的半徑.20.(8分)隨著移動計算技術和無線網絡的快速發(fā)展,移動學習方式越來越引起人們的關注,某校計劃將這種學習方式應用到教育學中,從全校1500名學生中隨機抽取了部分學生,對其家庭中擁有的移動設備的情況進行調查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關信息,解答下列問題:本次接受隨機抽樣調查的學生人數(shù)為,圖①中m的值為;求本次調查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);根據(jù)樣本數(shù)據(jù),估計該校1500名學生家庭中擁有3臺移動設備的學生人數(shù).21.(8分)如圖,益陽市梓山湖中有一孤立小島,湖邊有一條筆直的觀光小道AB,現(xiàn)決定從小島架一座與觀光小道垂直的小橋PD,小張在小道上測得如下數(shù)據(jù):AB=80.0米,∠PAB=38.1°,∠PBA=26.1.請幫助小張求出小橋PD的長并確定小橋在小道上的位置.(以A,B為參照點,結果精確到0.1米)(參考數(shù)據(jù):sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)22.(10分)計算:=_____.23.(12分)為了了解初一年級學生每學期參加綜合實踐活動的情況,某區(qū)教育行政部門隨機抽樣調查了部分初一學生一個學期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了統(tǒng)計圖①和圖②,請根據(jù)圖中提供的信息,回答下列問題:(I)本次隨機抽樣調查的學生人數(shù)為,圖①中的m的值為;(II)求本次抽樣調查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);(III)若該區(qū)初一年級共有學生2500人,請估計該區(qū)初一年級這個學期參加綜合實踐活動的天數(shù)大于4天的學生人數(shù).24.在?ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.(1)求證:四邊形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

解:設小長方形的寬為a,長為b,則有b=n-3a,陰影部分的周長:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故選D.2、C【解析】

首先看圖可知,蓄水池的下部分比上部分的體積小,故h與t的關系變?yōu)橄瓤旌舐驹斀狻扛鶕?jù)題意和圖形的形狀,可知水的最大深度h與時間t之間的關系分為兩段,先快后慢。故選:C.【點睛】此題考查函數(shù)的圖象,解題關鍵在于觀察圖形3、B【解析】試題解析:把點代入一次函數(shù)得,.∵點在第一象限上,∴,可得,因此,即,故選B.4、A【解析】

絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】,故選:A.【點睛】本題考查了用科學記數(shù)法表示較小的數(shù),一般形式為,其中,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.5、D【解析】分析:由圖1、圖2結合題意可知,當DP⊥AB時,DP最短,由此可得DP最短=y最小=,這樣如圖3,過點P作PD⊥AB于點P,連接AD,結合△ABC是等邊三角形和點D是BC邊的中點進行分析解答即可.詳解:由題意可知:當DP⊥AB時,DP最短,由此可得DP最短=y最小=,如圖3,過點P作PD⊥AB于點P,連接AD,∵△ABC是等邊三角形,點D是BC邊上的中點,∴∠ABC=60°,AD⊥BC,∵DP⊥AB于點P,此時DP=,∴BD=,∴BC=2BD=4,∴AB=4,∴AD=AB·sin∠B=4×sin60°=,∴S△ABC=AD·BC=.故選D.點睛:“讀懂題意,知道當DP⊥AB于點P時,DP最短=”是解答本題的關鍵.6、A【解析】

當點F在MD上運動時,0≤x<2;當點F在DA上運動時,2<x≤4.再按相關圖形面積公式列出表達式即可.【詳解】解:當點F在MD上運動時,0≤x<2,則:y=S梯形ECDG-S△EFC-S△GDF=,當點F在DA上運動時,2<x≤4,則:y=,綜上,只有A選項圖形符合題意,故選擇A.【點睛】本題考查了動點問題的函數(shù)圖像,抓住動點運動的特點是解題關鍵.7、B【解析】

作弧后可知MN⊥CB,且CD=DB.【詳解】由題意性質可知MN是BC的垂直平分線,則MN⊥CB,且CD=DB,則CD+AD=AB.【點睛】了解中垂線的作圖規(guī)則是解題的關鍵.8、D【解析】

一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,共有10種等可能的結果,其中摸出白球的所有等可能結果共有2種,根據(jù)概率公式即可得出答案.【詳解】根據(jù)題意:從袋中任意摸出一個球,是白球的概率為==.故答案為D【點睛】此題主要考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.9、B【解析】

連接BC,由網格求出AB,BC,AC的長,利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【詳解】如圖,連接BC,由網格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【點睛】本題考查了銳角三角函數(shù)的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.10、D【解析】分析:根據(jù)合并同類項、同底數(shù)冪的乘法、冪的乘方、同底數(shù)冪的除法的運算法則計算即可.解答:解:A、x+x=2x,選項錯誤;B、x?x=x2,選項錯誤;C、(x2)3=x6,選項錯誤;D、正確.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】過點B作BE⊥x軸于點E,根據(jù)D為OB的中點可知CD是△OBE的中位線,即CD=BE,設A(x,),則B(2x,),故CD=,AD=﹣,再由△ADO的面積為1求出k的值即可得出結論.解:如圖所示,過點B作BE⊥x軸于點E,∵D為OB的中點,∴CD是△OBE的中位線,即CD=BE.設A(x,),則B(2x,),CD=,AD=﹣,∵△ADO的面積為1,∴AD?OC=3,(﹣)?x=3,解得k=1,故答案為1.12、18【解析】

三角形的重心是三條中線的交點,根據(jù)中線的性質,S△ACD=S△BCD;再利用勾股定理逆定理證明BG⊥CE,從而得出△BCD的高,可求△BCD的面積.【詳解】∵點G是△ABC的重心,∴∵GB=3,EG=GC=4,BE=GA=5,∴,即BG⊥CE,∵CD為△ABC的中線,∴∴故答案為:18.【點睛】考查三角形重心的性質,中線的性質,旋轉的性質,勾股定理逆定理等,綜合性比較強,對學生要求較高.13、.【解析】

由正六邊形的性質得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性質得出∠ABF=∠BAC=∠BCA=30°,證出AG=BG,∠CBG=90°,由含30°角的直角三角形的性質得出CG=2BG=2AG,即可得出答案.【詳解】∵六邊形ABCDEF是正六邊形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴=;故答案為:.【點睛】本題考查了正六邊形的性質、等腰三角形的判定、含30°角的直角三角形的性質等知識;熟練掌握正六邊形的性質和含30°角的直角三角形的性質是解題的關鍵.14、(或)【解析】

將拋物線化為頂點式,再按照“左加右減,上加下減”的規(guī)律平移即可.【詳解】解:化為頂點式得:,∴向右平移1個單位,再向下平移2個單位得:,化為一般式得:,故答案為:(或).【點睛】此題不僅考查了對圖象平移的理解,同時考查了學生將一般式轉化頂點式的能力.15、【解析】

作梯形ABCD關于AB的軸對稱圖形,將BC'繞點C'逆時針旋轉120°,則有GE'=FE',P與Q是關于AB的對稱點,當點F'、G、P三點在一條直線上時,△FEP的周長最小即為F'G+GE'+E'P,此時點P與點M重合,F(xiàn)'M為所求長度;過點F'作F'H⊥BC',M是BC中點,則Q是BC'中點,由已知條件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以F'H=,HC'=1,在Rt△MF'H中,即可求得F'M.【詳解】作梯形ABCD關于AB的軸對稱圖形,作F關于AB的對稱點G,P關于AB的對稱點Q,∴PF=GQ,將BC'繞點C'逆時針旋轉120°,Q點關于C'G的對應點為F',∴GF'=GQ,設F'M交AB于點E',∵F關于AB的對稱點為G,∴GE'=FE',

∴當點F'、G、P三點在一條直線上時,△FEP的周長最小即為F'G+GE'+E'P,此時點P與點M重合,∴F'M為所求長度;

過點F'作F'H⊥BC',

∵M是BC中點,

∴Q是BC'中點,

∵∠B=90°,∠C=60°,BC=2AD=4,

∴C'Q=F'C'=2,∠F'C'H=60°,

∴F'H=,HC'=1,∴MH=7,

在Rt△MF'H中,F(xiàn)'M;

∴△FEP的周長最小值為.

故答案為:.【點睛】本題考查了動點問題的最短距離,涉及的知識點有:勾股定理,含30度角直角三角形的性質,能夠通過軸對稱和旋轉,將三角形的三條邊轉化為線段的長是解題的關鍵.16、【解析】分析:按照二次根式的相關運算法則和性質進行計算即可.詳解:∵,∴.故答案為:.點睛:熟記二次根式的以下性質是解答本題的關鍵:(1);(2)=.三、解答題(共8題,共72分)17、(1)一臺A型無人機售價800元,一臺B型無人機的售價1000元;(2)①y=﹣200x+50000;②購進A型、B型無人機各16臺、34臺時,才能使總費用最少.【解析】

(1)根據(jù)3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元,可以列出相應的方程組,從而可以解答本題;(2)①根據(jù)題意可以得到y(tǒng)與x的函數(shù)關系式;②根據(jù)①中的函數(shù)關系式和B型無人機的數(shù)量不少于A型無人機的數(shù)量的2倍,可以求得購進A型、B型無人機各多少臺,才能使總費用最少.【詳解】解:(1)設一臺型無人機售價元,一臺型無人機的售價元,,解得,,答:一臺型無人機售價元,一臺型無人機的售價元;(2)①由題意可得,即y與x的函數(shù)關系式為;②∵B型無人機的數(shù)量不少于A型無人機的數(shù)量的2倍,,解得,,,∴當時,y取得最小值,此時,答:購進型、型無人機各臺、臺時,才能使總費用最少.【點睛】本題考查二元一次方程組的應用、一次函數(shù)的應用、一元一次不等式的應用,解答本題的關鍵是明確題意,利用一次函數(shù)的性質和方程的知識解答.18、騎共享單車從家到單位上班花費的時間是1分鐘.【解析】試題分析:設騎共享單車從家到單位上班花費x分鐘,找出題目中的等量關系,列出方程,求解即可.試題解析:設騎共享單車從家到單位上班花費x分鐘,依題意得:解得x=1.經檢驗,x=1是原方程的解,且符合題意.答:騎共享單車從家到單位上班花費的時間是1分鐘.19、⊙O的半徑為.【解析】

如圖,連接OA.交BC于H.首先證明OA⊥BC,在Rt△ACH中,求出AH,設⊙O的半徑為r,在Rt△BOH中,根據(jù)BH2+OH2=OB2,構建方程即可解決問題?!驹斀狻拷猓喝鐖D,連接OA.交BC于H.∵點A為的中點,∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵,AC=9,∴AH=3,設⊙O的半徑為r,在Rt△BOH中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半徑為.【點睛】本題考查圓心角、弧、弦的關系、垂徑定理、勾股定理、銳角三角函數(shù)等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.20、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.【解析】

(Ⅰ)利用家庭中擁有1臺移動設備的人數(shù)除以其所占百分比即可得調查的學生人數(shù),將擁有4臺移動設備的人數(shù)除以總人數(shù)即可求得m的值;(Ⅱ)根據(jù)眾數(shù)、中位數(shù)、加權平均數(shù)的定義計算即可;(Ⅲ)將樣本中擁有3臺移動設備的學生人數(shù)所占比例乘以總人數(shù)1500即可求解.【詳解】解:(Ⅰ)本次接受隨機抽樣調查的學生人數(shù)為:=50(人),∵×100=31%,∴圖①中m的值為31.故答案為50、31;(Ⅱ)∵這組樣本數(shù)據(jù)中,4出現(xiàn)了16次,出現(xiàn)次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為4;∵將這組數(shù)據(jù)從小到大排列,其中處于中間的兩個數(shù)均為3,有=3,∴這組數(shù)據(jù)的中位數(shù)是3;由條形統(tǒng)計圖可得=3.1,∴這組數(shù)據(jù)的平均數(shù)是3.1.(Ⅲ)1500×18%=410(人).答:估計該校學生家庭中;擁有3臺移動設備的學生人數(shù)約為410人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?1、49.2米【解析】

設PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的長度,繼而也可確定小橋在小道上的位置.【詳解】解:設PD=x米,∵PD⊥AB,∴∠ADP=∠BDP=90°.在Rt△PAD中,,∴.在Rt△PBD中,,∴.又∵AB=80.0米,∴,解得:x≈24.6,即PD≈24.6米.∴DB=2x=49.2米.答:小橋PD的長度約為24.6米,位于AB之間距B點約49.2米.22、1【解析】

首先計算負整數(shù)指數(shù)冪和開平方,再計算減法即可.【詳解】解:原式=9﹣3=1.【點睛】此題主要考查了實數(shù)運算,關鍵是掌握負整數(shù)指數(shù)冪:為正整數(shù)).23、(I)150、14;(II)眾數(shù)為3天、中位數(shù)為4天,平均數(shù)為3.5天;(III)700人【解析】

(I)根據(jù)1天的人數(shù)及其百分比可得總人數(shù),總人數(shù)減去其它天數(shù)的人數(shù)即可得m的值;(I

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論