內(nèi)蒙古鄂爾多斯康巴什新區(qū)2022年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁
內(nèi)蒙古鄂爾多斯康巴什新區(qū)2022年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁
內(nèi)蒙古鄂爾多斯康巴什新區(qū)2022年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁
內(nèi)蒙古鄂爾多斯康巴什新區(qū)2022年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁
內(nèi)蒙古鄂爾多斯康巴什新區(qū)2022年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

內(nèi)蒙古鄂爾多斯康巴什新區(qū)2022年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.完全相同的6個小矩形如圖所示放置,形成了一個長、寬分別為n、m的大矩形,則圖中陰影部分的周長是()A.6(m﹣n) B.3(m+n) C.4n D.4m2.如圖是某蓄水池的橫斷面示意圖,分為深水池和淺水池,如果向這個蓄水池以固定的流量注水,下面能大致表示水的最大深度與時間之間的關(guān)系的圖象是()A. B. C. D.3.點是一次函數(shù)圖象上一點,若點在第一象限,則的取值范圍是().A. B. C. D.4.某種超薄氣球表面的厚度約為,這個數(shù)用科學(xué)記數(shù)法表示為()A. B. C. D.5.如圖1,在等邊△ABC中,D是BC的中點,P為AB邊上的一個動點,設(shè)AP=x,圖1中線段DP的長為y,若表示y與x的函數(shù)關(guān)系的圖象如圖2所示,則△ABC的面積為()A.4 B. C.12 D.6.如圖,正方形ABCD的邊長為4,點M是CD的中點,動點E從點B出發(fā),沿BC運動,到點C時停止運動,速度為每秒1個長度單位;動點F從點M出發(fā),沿M→D→A遠(yuǎn)動,速度也為每秒1個長度單位:動點G從點D出發(fā),沿DA運動,速度為每秒2個長度單位,到點A后沿AD返回,返回時速度為每秒1個長度單位,三個點的運動同時開始,同時結(jié)束.設(shè)點E的運動時間為x,△EFG的面積為y,下列能表示y與x的函數(shù)關(guān)系的圖象是()A. B.C. D.7.如圖,在已知的△ABC中,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長為半徑作弧,兩弧相交于點M、N;②作直線MN交AB于點D,連接CD,則下列結(jié)論正確的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB8.在一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,是白球的概率為(

)A. B. C. D.9.如圖,A、B、C是小正方形的頂點,且每個小正方形的邊長為1,則tan∠BAC的值為()A. B.1 C. D.10.下列計算正確的是()A.x+x=x2B.x·x=2xC.(二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,A、B是雙曲線y=上的兩點,過A點作AC⊥x軸,交OB于D點,垂足為C.若D為OB的中點,△ADO的面積為3,則k的值為_____.12.如圖,點G是△ABC的重心,CG的延長線交AB于D,GA=5cm,GC=4cm,GB=3cm,將△ADG繞點D旋轉(zhuǎn)180°得到△BDE,△ABC的面積=_____cm1.13.如圖,在正六邊形ABCDEF中,AC于FB相交于點G,則值為_____.14.拋物線向右平移1個單位,再向下平移2個單位所得拋物線是__________.15.如圖,已知,點為邊中點,點在線段上運動,點在線段上運動,連接,則周長的最小值為______.16.當(dāng)a<0,b>0時.化簡:=_____.三、解答題(共8題,共72分)17.(8分)某市飛翔航模小隊,計劃購進一批無人機.已知3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元.(1)求一臺A型無人機和一臺B型無人機的售價各是多少元?(2)該航模小隊一次購進兩種型號的無人機共50臺,并且B型無人機的數(shù)量不少于A型無人機的數(shù)量的2倍.設(shè)購進A型無人機x臺,總費用為y元.①求y與x的關(guān)系式;②購進A型、B型無人機各多少臺,才能使總費用最少?18.(8分)在大城市,很多上班族選擇“低碳出行”,電動車和共享單車成為他們的代步工具.某人去距離家8千米的單位上班,騎共享單車雖然比騎電動車多用20分鐘,但卻能強身健體,已知他騎電動車的速度是騎共享單車的1.5倍,求騎共享單車從家到單位上班花費的時間.19.(8分)如圖,已知⊙O經(jīng)過△ABC的頂點A、B,交邊BC于點D,點A恰為的中點,且BD=8,AC=9,sinC=,求⊙O的半徑.20.(8分)隨著移動計算技術(shù)和無線網(wǎng)絡(luò)的快速發(fā)展,移動學(xué)習(xí)方式越來越引起人們的關(guān)注,某校計劃將這種學(xué)習(xí)方式應(yīng)用到教育學(xué)中,從全校1500名學(xué)生中隨機抽取了部分學(xué)生,對其家庭中擁有的移動設(shè)備的情況進行調(diào)查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為,圖①中m的值為;求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);根據(jù)樣本數(shù)據(jù),估計該校1500名學(xué)生家庭中擁有3臺移動設(shè)備的學(xué)生人數(shù).21.(8分)如圖,益陽市梓山湖中有一孤立小島,湖邊有一條筆直的觀光小道AB,現(xiàn)決定從小島架一座與觀光小道垂直的小橋PD,小張在小道上測得如下數(shù)據(jù):AB=80.0米,∠PAB=38.1°,∠PBA=26.1.請幫助小張求出小橋PD的長并確定小橋在小道上的位置.(以A,B為參照點,結(jié)果精確到0.1米)(參考數(shù)據(jù):sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)22.(10分)計算:=_____.23.(12分)為了了解初一年級學(xué)生每學(xué)期參加綜合實踐活動的情況,某區(qū)教育行政部門隨機抽樣調(diào)查了部分初一學(xué)生一個學(xué)期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了統(tǒng)計圖①和圖②,請根據(jù)圖中提供的信息,回答下列問題:(I)本次隨機抽樣調(diào)查的學(xué)生人數(shù)為,圖①中的m的值為;(II)求本次抽樣調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);(III)若該區(qū)初一年級共有學(xué)生2500人,請估計該區(qū)初一年級這個學(xué)期參加綜合實踐活動的天數(shù)大于4天的學(xué)生人數(shù).24.在?ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.(1)求證:四邊形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

解:設(shè)小長方形的寬為a,長為b,則有b=n-3a,陰影部分的周長:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故選D.2、C【解析】

首先看圖可知,蓄水池的下部分比上部分的體積小,故h與t的關(guān)系變?yōu)橄瓤旌舐驹斀狻扛鶕?jù)題意和圖形的形狀,可知水的最大深度h與時間t之間的關(guān)系分為兩段,先快后慢。故選:C.【點睛】此題考查函數(shù)的圖象,解題關(guān)鍵在于觀察圖形3、B【解析】試題解析:把點代入一次函數(shù)得,.∵點在第一象限上,∴,可得,因此,即,故選B.4、A【解析】

絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】,故選:A.【點睛】本題考查了用科學(xué)記數(shù)法表示較小的數(shù),一般形式為,其中,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.5、D【解析】分析:由圖1、圖2結(jié)合題意可知,當(dāng)DP⊥AB時,DP最短,由此可得DP最短=y最小=,這樣如圖3,過點P作PD⊥AB于點P,連接AD,結(jié)合△ABC是等邊三角形和點D是BC邊的中點進行分析解答即可.詳解:由題意可知:當(dāng)DP⊥AB時,DP最短,由此可得DP最短=y最小=,如圖3,過點P作PD⊥AB于點P,連接AD,∵△ABC是等邊三角形,點D是BC邊上的中點,∴∠ABC=60°,AD⊥BC,∵DP⊥AB于點P,此時DP=,∴BD=,∴BC=2BD=4,∴AB=4,∴AD=AB·sin∠B=4×sin60°=,∴S△ABC=AD·BC=.故選D.點睛:“讀懂題意,知道當(dāng)DP⊥AB于點P時,DP最短=”是解答本題的關(guān)鍵.6、A【解析】

當(dāng)點F在MD上運動時,0≤x<2;當(dāng)點F在DA上運動時,2<x≤4.再按相關(guān)圖形面積公式列出表達(dá)式即可.【詳解】解:當(dāng)點F在MD上運動時,0≤x<2,則:y=S梯形ECDG-S△EFC-S△GDF=,當(dāng)點F在DA上運動時,2<x≤4,則:y=,綜上,只有A選項圖形符合題意,故選擇A.【點睛】本題考查了動點問題的函數(shù)圖像,抓住動點運動的特點是解題關(guān)鍵.7、B【解析】

作弧后可知MN⊥CB,且CD=DB.【詳解】由題意性質(zhì)可知MN是BC的垂直平分線,則MN⊥CB,且CD=DB,則CD+AD=AB.【點睛】了解中垂線的作圖規(guī)則是解題的關(guān)鍵.8、D【解析】

一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,共有10種等可能的結(jié)果,其中摸出白球的所有等可能結(jié)果共有2種,根據(jù)概率公式即可得出答案.【詳解】根據(jù)題意:從袋中任意摸出一個球,是白球的概率為==.故答案為D【點睛】此題主要考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.9、B【解析】

連接BC,由網(wǎng)格求出AB,BC,AC的長,利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【詳解】如圖,連接BC,由網(wǎng)格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【點睛】本題考查了銳角三角函數(shù)的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關(guān)鍵.10、D【解析】分析:根據(jù)合并同類項、同底數(shù)冪的乘法、冪的乘方、同底數(shù)冪的除法的運算法則計算即可.解答:解:A、x+x=2x,選項錯誤;B、x?x=x2,選項錯誤;C、(x2)3=x6,選項錯誤;D、正確.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】過點B作BE⊥x軸于點E,根據(jù)D為OB的中點可知CD是△OBE的中位線,即CD=BE,設(shè)A(x,),則B(2x,),故CD=,AD=﹣,再由△ADO的面積為1求出k的值即可得出結(jié)論.解:如圖所示,過點B作BE⊥x軸于點E,∵D為OB的中點,∴CD是△OBE的中位線,即CD=BE.設(shè)A(x,),則B(2x,),CD=,AD=﹣,∵△ADO的面積為1,∴AD?OC=3,(﹣)?x=3,解得k=1,故答案為1.12、18【解析】

三角形的重心是三條中線的交點,根據(jù)中線的性質(zhì),S△ACD=S△BCD;再利用勾股定理逆定理證明BG⊥CE,從而得出△BCD的高,可求△BCD的面積.【詳解】∵點G是△ABC的重心,∴∵GB=3,EG=GC=4,BE=GA=5,∴,即BG⊥CE,∵CD為△ABC的中線,∴∴故答案為:18.【點睛】考查三角形重心的性質(zhì),中線的性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理逆定理等,綜合性比較強,對學(xué)生要求較高.13、.【解析】

由正六邊形的性質(zhì)得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性質(zhì)得出∠ABF=∠BAC=∠BCA=30°,證出AG=BG,∠CBG=90°,由含30°角的直角三角形的性質(zhì)得出CG=2BG=2AG,即可得出答案.【詳解】∵六邊形ABCDEF是正六邊形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴=;故答案為:.【點睛】本題考查了正六邊形的性質(zhì)、等腰三角形的判定、含30°角的直角三角形的性質(zhì)等知識;熟練掌握正六邊形的性質(zhì)和含30°角的直角三角形的性質(zhì)是解題的關(guān)鍵.14、(或)【解析】

將拋物線化為頂點式,再按照“左加右減,上加下減”的規(guī)律平移即可.【詳解】解:化為頂點式得:,∴向右平移1個單位,再向下平移2個單位得:,化為一般式得:,故答案為:(或).【點睛】此題不僅考查了對圖象平移的理解,同時考查了學(xué)生將一般式轉(zhuǎn)化頂點式的能力.15、【解析】

作梯形ABCD關(guān)于AB的軸對稱圖形,將BC'繞點C'逆時針旋轉(zhuǎn)120°,則有GE'=FE',P與Q是關(guān)于AB的對稱點,當(dāng)點F'、G、P三點在一條直線上時,△FEP的周長最小即為F'G+GE'+E'P,此時點P與點M重合,F(xiàn)'M為所求長度;過點F'作F'H⊥BC',M是BC中點,則Q是BC'中點,由已知條件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以F'H=,HC'=1,在Rt△MF'H中,即可求得F'M.【詳解】作梯形ABCD關(guān)于AB的軸對稱圖形,作F關(guān)于AB的對稱點G,P關(guān)于AB的對稱點Q,∴PF=GQ,將BC'繞點C'逆時針旋轉(zhuǎn)120°,Q點關(guān)于C'G的對應(yīng)點為F',∴GF'=GQ,設(shè)F'M交AB于點E',∵F關(guān)于AB的對稱點為G,∴GE'=FE',

∴當(dāng)點F'、G、P三點在一條直線上時,△FEP的周長最小即為F'G+GE'+E'P,此時點P與點M重合,∴F'M為所求長度;

過點F'作F'H⊥BC',

∵M是BC中點,

∴Q是BC'中點,

∵∠B=90°,∠C=60°,BC=2AD=4,

∴C'Q=F'C'=2,∠F'C'H=60°,

∴F'H=,HC'=1,∴MH=7,

在Rt△MF'H中,F(xiàn)'M;

∴△FEP的周長最小值為.

故答案為:.【點睛】本題考查了動點問題的最短距離,涉及的知識點有:勾股定理,含30度角直角三角形的性質(zhì),能夠通過軸對稱和旋轉(zhuǎn),將三角形的三條邊轉(zhuǎn)化為線段的長是解題的關(guān)鍵.16、【解析】分析:按照二次根式的相關(guān)運算法則和性質(zhì)進行計算即可.詳解:∵,∴.故答案為:.點睛:熟記二次根式的以下性質(zhì)是解答本題的關(guān)鍵:(1);(2)=.三、解答題(共8題,共72分)17、(1)一臺A型無人機售價800元,一臺B型無人機的售價1000元;(2)①y=﹣200x+50000;②購進A型、B型無人機各16臺、34臺時,才能使總費用最少.【解析】

(1)根據(jù)3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元,可以列出相應(yīng)的方程組,從而可以解答本題;(2)①根據(jù)題意可以得到y(tǒng)與x的函數(shù)關(guān)系式;②根據(jù)①中的函數(shù)關(guān)系式和B型無人機的數(shù)量不少于A型無人機的數(shù)量的2倍,可以求得購進A型、B型無人機各多少臺,才能使總費用最少.【詳解】解:(1)設(shè)一臺型無人機售價元,一臺型無人機的售價元,,解得,,答:一臺型無人機售價元,一臺型無人機的售價元;(2)①由題意可得,即y與x的函數(shù)關(guān)系式為;②∵B型無人機的數(shù)量不少于A型無人機的數(shù)量的2倍,,解得,,,∴當(dāng)時,y取得最小值,此時,答:購進型、型無人機各臺、臺時,才能使總費用最少.【點睛】本題考查二元一次方程組的應(yīng)用、一次函數(shù)的應(yīng)用、一元一次不等式的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)和方程的知識解答.18、騎共享單車從家到單位上班花費的時間是1分鐘.【解析】試題分析:設(shè)騎共享單車從家到單位上班花費x分鐘,找出題目中的等量關(guān)系,列出方程,求解即可.試題解析:設(shè)騎共享單車從家到單位上班花費x分鐘,依題意得:解得x=1.經(jīng)檢驗,x=1是原方程的解,且符合題意.答:騎共享單車從家到單位上班花費的時間是1分鐘.19、⊙O的半徑為.【解析】

如圖,連接OA.交BC于H.首先證明OA⊥BC,在Rt△ACH中,求出AH,設(shè)⊙O的半徑為r,在Rt△BOH中,根據(jù)BH2+OH2=OB2,構(gòu)建方程即可解決問題。【詳解】解:如圖,連接OA.交BC于H.∵點A為的中點,∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵,AC=9,∴AH=3,設(shè)⊙O的半徑為r,在Rt△BOH中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半徑為.【點睛】本題考查圓心角、弧、弦的關(guān)系、垂徑定理、勾股定理、銳角三角函數(shù)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題.20、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.【解析】

(Ⅰ)利用家庭中擁有1臺移動設(shè)備的人數(shù)除以其所占百分比即可得調(diào)查的學(xué)生人數(shù),將擁有4臺移動設(shè)備的人數(shù)除以總?cè)藬?shù)即可求得m的值;(Ⅱ)根據(jù)眾數(shù)、中位數(shù)、加權(quán)平均數(shù)的定義計算即可;(Ⅲ)將樣本中擁有3臺移動設(shè)備的學(xué)生人數(shù)所占比例乘以總?cè)藬?shù)1500即可求解.【詳解】解:(Ⅰ)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為:=50(人),∵×100=31%,∴圖①中m的值為31.故答案為50、31;(Ⅱ)∵這組樣本數(shù)據(jù)中,4出現(xiàn)了16次,出現(xiàn)次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為4;∵將這組數(shù)據(jù)從小到大排列,其中處于中間的兩個數(shù)均為3,有=3,∴這組數(shù)據(jù)的中位數(shù)是3;由條形統(tǒng)計圖可得=3.1,∴這組數(shù)據(jù)的平均數(shù)是3.1.(Ⅲ)1500×18%=410(人).答:估計該校學(xué)生家庭中;擁有3臺移動設(shè)備的學(xué)生人數(shù)約為410人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.21、49.2米【解析】

設(shè)PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的長度,繼而也可確定小橋在小道上的位置.【詳解】解:設(shè)PD=x米,∵PD⊥AB,∴∠ADP=∠BDP=90°.在Rt△PAD中,,∴.在Rt△PBD中,,∴.又∵AB=80.0米,∴,解得:x≈24.6,即PD≈24.6米.∴DB=2x=49.2米.答:小橋PD的長度約為24.6米,位于AB之間距B點約49.2米.22、1【解析】

首先計算負(fù)整數(shù)指數(shù)冪和開平方,再計算減法即可.【詳解】解:原式=9﹣3=1.【點睛】此題主要考查了實數(shù)運算,關(guān)鍵是掌握負(fù)整數(shù)指數(shù)冪:為正整數(shù)).23、(I)150、14;(II)眾數(shù)為3天、中位數(shù)為4天,平均數(shù)為3.5天;(III)700人【解析】

(I)根據(jù)1天的人數(shù)及其百分比可得總?cè)藬?shù),總?cè)藬?shù)減去其它天數(shù)的人數(shù)即可得m的值;(I

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論