2024屆浙江省泉山市臺商投資區(qū)重點名校中考二模數(shù)學試題含解析_第1頁
2024屆浙江省泉山市臺商投資區(qū)重點名校中考二模數(shù)學試題含解析_第2頁
2024屆浙江省泉山市臺商投資區(qū)重點名校中考二模數(shù)學試題含解析_第3頁
2024屆浙江省泉山市臺商投資區(qū)重點名校中考二模數(shù)學試題含解析_第4頁
2024屆浙江省泉山市臺商投資區(qū)重點名校中考二模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆浙江省泉山市臺商投資區(qū)重點名校中考二模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,點A、B、C在圓O上,若∠OBC=40°,則∠A的度數(shù)為()A.40° B.45° C.50° D.55°2.如圖,在矩形ABCD中,連接BD,點O是BD的中點,若點M在AD邊上,連接MO并延長交BC邊于點M’,連接MB,DM’則圖中的全等三角形共有()A.3對 B.4對 C.5對 D.6對3.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,PE,PF分別交AB,AC于點E,F(xiàn),給出下列四個結(jié)論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結(jié)論正確的有()A.1個 B.2個 C.3個 D.4個4.反比例函數(shù)是y=的圖象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限5.兩個一次函數(shù),,它們在同一直角坐標系中的圖象大致是()A. B. C. D.6.若分式的值為零,則x的值是()A.1 B. C. D.27.如圖分別是某班全體學生上學時乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計圖(兩圖都不完整),下列結(jié)論錯誤的是()A.該班總?cè)藬?shù)為50 B.步行人數(shù)為30C.乘車人數(shù)是騎車人數(shù)的2.5倍 D.騎車人數(shù)占20%8.如圖,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,點F是AC的中點,AD與FE,CE分別交于點G、H,∠BCE=∠CAD,有下列結(jié)論:①圖中存在兩個等腰直角三角形;②△AHE≌△CBE;③BC?AD=AE2;④S△ABC=4S△ADF.其中正確的個數(shù)有()A.1 B.2 C.3 D.49.如圖,在△ABC中,點D,E分別在邊AB,AC上,且AEAB=ADA.1:3B.1:2C.1:3D.10.對于反比例函數(shù)y=(k≠0),下列所給的四個結(jié)論中,正確的是()A.若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上B.當k>0時,y隨x的增大而減小C.過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為kD.反比例函數(shù)的圖象關(guān)于直線y=﹣x成軸對稱二、填空題(共7小題,每小題3分,滿分21分)11.已知xy=3,那么的值為______.12.已知線段AB=2cm,點C在線段AB上,且AC2=BC·AB,則AC的長___________cm.13.計算a10÷a5=_______.14.方程組的解一定是方程_____與_____的公共解.15.“五一”期間,一批九年級同學包租一輛面包車前去竹海游覽,面包車的租金為300元,出發(fā)時,又增加了4名同學,且租金不變,這樣每個同學比原來少分攤了20元車費.若設(shè)參加游覽的同學一共有x人,為求x,可列方程_____.16.分解因式:=_______.17.分解因式:ax2﹣2ax+a=___________.三、解答題(共7小題,滿分69分)18.(10分)在平面直角坐標系中,一次函數(shù)(a≠0)的圖象與反比例函數(shù)的圖象交于第二、第四象限內(nèi)的A、B兩點,與軸交于點C,過點A作AH⊥軸,垂足為點H,OH=3,tan∠AOH=,點B的坐標為(,-2).求該反比例函數(shù)和一次函數(shù)的解析式;求△AHO的周長.19.(5分)如圖1,已知△ABC是等腰直角三角形,∠BAC=90°,點D是BC的中點.作正方形DEFG,使點A、C分別在DG和DE上,連接AE,BG.試猜想線段BG和AE的數(shù)量關(guān)系是_____;將正方形DEFG繞點D逆時針方向旋轉(zhuǎn)α(0°<α≤360°),①判斷(1)中的結(jié)論是否仍然成立?請利用圖2證明你的結(jié)論;②若BC=DE=4,當AE取最大值時,求AF的值.20.(8分)已知,如圖,直線MN交⊙O于A,B兩點,AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.求證:DE是⊙O的切線;若DE=6cm,AE=3cm,求⊙O的半徑.21.(10分)某小學為了了解學生每天完成家庭作業(yè)所用時間的情況,從每班抽取相同數(shù)量的學生進行調(diào)查,并將所得數(shù)據(jù)進行整理,制成條形統(tǒng)計圖和扇形統(tǒng)計圖如下:補全條形統(tǒng)計圖;求扇形統(tǒng)計圖扇形D的圓心角的度數(shù);若該中學有2000名學生,請估計其中有多少名學生能在1.5小時內(nèi)完成家庭作業(yè)?22.(10分)一艘貨輪往返于上下游兩個碼頭之間,逆流而上需要6小時,順流而下需要4小時,若船在靜水中的速度為20千米/時,則水流的速度是多少千米/時?23.(12分)先化簡,然后從﹣1,0,2中選一個合適的x的值,代入求值.24.(14分)如圖所示,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).把△ABC沿BA方向平移后,點A移到點A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;把△A1B1C1繞點A1按逆時針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2;如果網(wǎng)格中小正方形的邊長為1,求點B經(jīng)過(1)、(2)變換的路徑總長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理求得∠BOC=100°,再利用圓周角定理得到∠A=12【詳解】∵OB=OC,

∴∠OBC=∠OCB.

又∠OBC=40°,

∴∠OBC=∠OCB=40°,

∴∠BOC=180°-2×40°=100°,

∴∠A=12【點睛】考查了圓周角定理.在同圓或等圓中,一條弧所對的圓周角是它所對的圓心角的一半.2、D【解析】

根據(jù)矩形的對邊平行且相等及其對稱性,即可寫出圖中的全等三角形的對數(shù).【詳解】圖中圖中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB,△OBM≌△ODM’,△OBM’≌△ODM,△M’BM≌△MDM’,△DBM≌△BDM’,故選D.【點睛】此題主要考查矩形的性質(zhì)及全等三角形的判定,解題的關(guān)鍵是熟知矩形的對稱性.3、C【解析】

利用“角邊角”證明△APE和△CPF全等,根據(jù)全等三角形的可得AE=CF,再根據(jù)等腰直角三角形的定義得到△EFP是等腰直角三角形,根據(jù)全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.【詳解】∵AB=AC,∠BAC=90°,點P是BC的中點,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正確;∵△AEP≌△CFP,同理可證△APF≌△BPE,∴△EFP是等腰直角三角形,故③錯誤;∵△APE≌△CPF,∴S△APE=S△CPF,∴四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正確,故選C.【點睛】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),根據(jù)同角的余角相等求出∠APE=∠CPF,從而得到△APE和△CPF全等是解題的關(guān)鍵,也是本題的突破點.4、B【解析】

解:∵反比例函數(shù)是y=中,k=2>0,

∴此函數(shù)圖象的兩個分支分別位于一、三象限.

故選B.5、B【解析】

根據(jù)各選項中的函數(shù)圖象判斷出a、b的符號,然后分別確定出兩直線經(jīng)過的象限以及與y軸的交點位置,即可得解.【詳解】解:由圖可知,A、B、C選項兩直線一條經(jīng)過第一三象限,另一條經(jīng)過第二四象限,

所以,a、b異號,

所以,經(jīng)過第一三象限的直線與y軸負半軸相交,經(jīng)過第二四象限的直線與y軸正半軸相交,

B選項符合,

D選項,a、b都經(jīng)過第二、四象限,

所以,兩直線都與y軸負半軸相交,不符合.

故選:B.【點睛】本題考查了一次函數(shù)的圖象,一次函數(shù)y=kx+b(k≠0),k>0時,一次函數(shù)圖象經(jīng)過第一三象限,k<0時,一次函數(shù)圖象經(jīng)過第二四象限,b>0時與y軸正半軸相交,b<0時與y軸負半軸相交.6、A【解析】試題解析:∵分式的值為零,∴|x|﹣1=0,x+1≠0,解得:x=1.故選A.7、B【解析】

根據(jù)乘車人數(shù)是25人,而乘車人數(shù)所占的比例是50%,即可求得總?cè)藬?shù),然后根據(jù)百分比的含義即可求得步行的人數(shù),以及騎車人數(shù)所占的比例.【詳解】A、總?cè)藬?shù)是:25÷50%=50(人),故A正確;B、步行的人數(shù)是:50×30%=15(人),故B錯誤;C、乘車人數(shù)是騎車人數(shù)倍數(shù)是:50%÷20%=2.5,故C正確;D、騎車人數(shù)所占的比例是:1-50%-30%=20%,故D正確.由于該題選擇錯誤的,故選B.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.8、C【解析】

①圖中有3個等腰直角三角形,故結(jié)論錯誤;②根據(jù)ASA證明即可,結(jié)論正確;③利用面積法證明即可,結(jié)論正確;④利用三角形的中線的性質(zhì)即可證明,結(jié)論正確.【詳解】∵CE⊥AB,∠ACE=45°,∴△ACE是等腰直角三角形,∵AF=CF,∴EF=AF=CF,∴△AEF,△EFC都是等腰直角三角形,∴圖中共有3個等腰直角三角形,故①錯誤,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,∴∠EAH=∠BCE,∵AE=EC,∠AEH=∠CEB=90°,∴△AHE≌△CBE,故②正確,∵S△ABC=BC?AD=AB?CE,AB=AC=AE,AE=CE,∴BC?AD=CE2,故③正確,∵AB=AC,AD⊥BC,∴BD=DC,∴S△ABC=2S△ADC,∵AF=FC,∴S△ADC=2S△ADF,∴S△ABC=4S△ADF.故選C.【點睛】本題考查相似三角形的判定和性質(zhì)、等腰直角三角形的判定和性質(zhì)、三角形的面積等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考選擇題中的壓軸題.9、C【解析】∵AEAB∴△ABC∽△AED?!郤Δ∴SΔ10、D【解析】分析:根據(jù)反比例函數(shù)的性質(zhì)一一判斷即可;詳解:A.若點(3,6)在其圖象上,則(﹣3,6)不在其圖象上,故本選項不符合題意;B.當k>0時,y隨x的增大而減小,錯誤,應該是當k>0時,在每個象限,y隨x的增大而減??;故本選項不符合題意;C.錯誤,應該是過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為|k|;故本選項不符合題意;D.正確,本選項符合題意.故選D.點睛:本題考查了反比例函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì),靈活運用所學知識解決問題,屬于中考常考題型.二、填空題(共7小題,每小題3分,滿分21分)11、±2【解析】分析:先化簡,再分同正或同負兩種情況作答.詳解:因為xy=3,所以x、y同號,于是原式==,當x>0,y>0時,原式==2;當x<0,y<0時,原式==?2故原式=±2.點睛:本題考查的是二次根式的化簡求值,能夠正確的判斷出化簡過程中被開方數(shù)底數(shù)的符號是解答此題的關(guān)鍵.12、【解析】

設(shè)AC=x,則BC=2-x,根據(jù)AC2=BC·AB列方程求解即可.【詳解】解:設(shè)AC=x,則BC=2-x,根據(jù)AC2=BC·AB可得x2=2(2-x),解得:x=或(舍去).故答案為.【點睛】本題考查了黃金分割的應用,關(guān)鍵是明確黃金分割所涉及的線段的比.13、a1.【解析】試題分析:根據(jù)同底數(shù)冪的除法底數(shù)不變指數(shù)相減,可得答案.原式=a10-1=a1,故答案為a1.考點:同底數(shù)冪的除法.14、5x﹣3y=83x+8y=9【解析】

方程組的解一定是方程5x﹣3y=8與3x+8y=9的公共解.故答案為5x﹣3y=8;3x+8y=9.15、﹣=1.【解析】原有的同學每人分擔的車費應該為,而實際每人分擔的車費為,方程應該表示為:﹣=1.故答案是:﹣=1.16、.【解析】

將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.【詳解】直接提取公因式即可:.17、a(x-1)1.【解析】

先提取公因式a,再對余下的多項式利用完全平方公式繼續(xù)分解.【詳解】解:ax1-1ax+a,

=a(x1-1x+1),

=a(x-1)1.【點睛】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.三、解答題(共7小題,滿分69分)18、(1)一次函數(shù)為,反比例函數(shù)為;(2)△AHO的周長為12【解析】分析:(1)根據(jù)正切函數(shù)可得AH=4,根據(jù)反比例函數(shù)的特點k=xy為定值,列出方程,求出k的值,便可求出反比例函數(shù)的解析式;根據(jù)k的值求出B兩點的坐標,用待定系數(shù)法便可求出一次函數(shù)的解析式.(2)由(1)知AH的長,根據(jù)勾股定理,可得AO的長,根據(jù)三角形的周長,可得答案.詳解:(1)∵tan∠AOH==∴AH=OH=4∴A(-4,3),代入,得k=-4×3=-12∴反比例函數(shù)為∴∴m=6∴B(6,-2)∴∴=,b=1∴一次函數(shù)為(2)△AHO的周長為:3+4+5=12點睛:此題考查的是反比例函數(shù)圖象上點的坐標特點及用待定系數(shù)法求一次函數(shù)及反比例函數(shù)的解析式.19、(1)BG=AE.(2)①成立BG=AE.證明見解析.②AF=.【解析】

(1)由等腰直角三角形的性質(zhì)及正方形的性質(zhì)就可以得出△ADE≌△BDG就可以得出結(jié)論;

(2)①如圖2,連接AD,由等腰直角三角形的性質(zhì)及正方形的性質(zhì)就可以得出△ADE≌△BDG就可以得出結(jié)論;

②由①可知BG=AE,當BG取得最大值時,AE取得最大值,由勾股定理就可以得出結(jié)論.【詳解】(1)BG=AE.理由:如圖1,∵△ABC是等腰直角三角形,∠BAC=90°,點D是BC的中點,∴AD⊥BC,BD=CD,∴∠ADB=∠ADC=90°.∵四邊形DEFG是正方形,∴DE=DG.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△ADE≌△BDG(SAS),∴BG=AE.故答案為BG=AE;(2)①成立BG=AE.理由:如圖2,連接AD,∵在Rt△BAC中,D為斜邊BC中點,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.

∵四邊形EFGD為正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△BDG≌△ADE(SAS),∴BG=AE;

②∵BG=AE,∴當BG取得最大值時,AE取得最大值.如圖3,當旋轉(zhuǎn)角為270°時,BG=AE.∵BC=DE=4,∴BG=2+4=6.∴AE=6.在Rt△AEF中,由勾股定理,得AF==,∴AF=2.【點睛】本題考查的知識點是全等三角形的判定與性質(zhì)及勾股定理及正方形的性質(zhì)和等腰直角三角形,解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì)及勾股定理以及正方形的性質(zhì)和等腰直角三角形.20、解:(1)證明見解析;(2)⊙O的半徑是7.5cm.【解析】

(1)連接OD,根據(jù)平行線的判斷方法與性質(zhì)可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切線.(2)由直角三角形的特殊性質(zhì),可得AD的長,又有△ACD∽△ADE.根據(jù)相似三角形的性質(zhì)列出比例式,代入數(shù)據(jù)即可求得圓的半徑.【詳解】(1)證明:連接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD為⊙O的半徑,∴DE是⊙O的切線.(2)解:∵∠AED=90°,DE=6,AE=3,∴.連接CD.∵AC是⊙O的直徑,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴.則AC=15(cm).∴⊙O的半徑是7.5cm.考點:切線的判定;平行線的判定與性質(zhì);圓周角定理;相似三角形的判定與性質(zhì).21、(1)補圖見解析;(2)27°;(3)1800名【解析】

(1)根據(jù)A類的人數(shù)是10,所占的百分比是25%即可求得總?cè)藬?shù),然后根據(jù)百分比的意義求得B類的人數(shù);

(2)用360°乘以對應的比例即可求解;

(3)用總?cè)藬?shù)乘以對應的百分比即可求解.【詳解】(1)抽取的總?cè)藬?shù)是:10÷25%=40(人),在B類的人數(shù)是:40×30%=12(人).;(2)扇形統(tǒng)計圖扇形D的圓心角的度數(shù)是:360×=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論