湖北省黃石市陽新一中卓越聯(lián)盟2022年中考數(shù)學(xué)四模試卷含解析_第1頁
湖北省黃石市陽新一中卓越聯(lián)盟2022年中考數(shù)學(xué)四模試卷含解析_第2頁
湖北省黃石市陽新一中卓越聯(lián)盟2022年中考數(shù)學(xué)四模試卷含解析_第3頁
湖北省黃石市陽新一中卓越聯(lián)盟2022年中考數(shù)學(xué)四模試卷含解析_第4頁
湖北省黃石市陽新一中卓越聯(lián)盟2022年中考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省黃石市陽新一中卓越聯(lián)盟2022年中考數(shù)學(xué)四模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線圖,則符合這一結(jié)果的實驗最有可能的是()A.在“石頭、剪刀、布”的游戲中,小明隨機出的是“剪刀”B.?dāng)S一枚質(zhì)地均勻的正六面體骰子,向上一面的點數(shù)是4C.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃D.拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上2.估計﹣2的值應(yīng)該在()A.﹣1﹣0之間 B.0﹣1之間 C.1﹣2之間 D.2﹣3之間3.如圖,拋物線y=ax2+bx+c(a≠0)過點(1,0)和點(0,﹣2),且頂點在第三象限,設(shè)P=a﹣b+c,則P的取值范圍是()A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<04.下列各式計算正確的是()A.a(chǎn)4?a3=a12 B.3a?4a=12a C.(a3)4=a12 D.a(chǎn)12÷a3=a45.不論x、y為何值,用配方法可說明代數(shù)式x2+4y2+6x﹣4y+11的值()A.總不小于1B.總不小于11C.可為任何實數(shù)D.可能為負數(shù)6.如圖,點O′在第一象限,⊙O′與x軸相切于H點,與y軸相交于A(0,2),B(0,8),則點O′的坐標(biāo)是()A.(6,4) B.(4,6) C.(5,4) D.(4,5)7.如圖,△ABC為等腰直角三角形,∠C=90°,點P為△ABC外一點,CP=,BP=3,AP的最大值是()A.+3 B.4 C.5 D.38.下列計算結(jié)果為a6的是()A.a(chǎn)2?a3B.a(chǎn)12÷a2C.(a2)3D.(﹣a2)39.已知關(guān)于x的一元二次方程有實數(shù)根,則m的取值范圍是()A. B. C. D.10.如圖,點A,B在反比例函數(shù)y=1x(x>0)的圖象上,點C,D在反比例函數(shù)y=A.4 B.3 C.2 D.311.計算的結(jié)果為()A.2 B.1 C.0 D.﹣112.下列圖形中,是正方體表面展開圖的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某一時刻,測得一根高1.5m的竹竿在陽光下的影長為2.5m.同時測得旗桿在陽光下的影長為30m,則旗桿的高為__________m.14.如圖,一組平行橫格線,其相鄰橫格線間的距離都相等,已知點A、B、C、D、O都在橫格線上,且線段AD,BC交于點O,則AB:CD等于______.15.已知x(x+1)=x+1,則x=________.16.如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是.17.有一組數(shù)據(jù):2,3,5,5,x,它們的平均數(shù)是10,則這組數(shù)據(jù)的眾數(shù)是.18.如圖,當(dāng)半徑為30cm的轉(zhuǎn)動輪轉(zhuǎn)過120角時,傳送帶上的物體A平移的距離為______cm.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)問題探究(1)如圖①,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數(shù)量關(guān)系為;(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個不固定的角,以AC為邊向△ADC的另一側(cè)作等邊△ABC,連接BD,則BD的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由;問題解決(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點D,則對角線AC的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由.20.(6分)計算:﹣|﹣2|+()﹣1﹣2cos45°21.(6分)如圖所示:△ABC是等腰三角形,∠ABC=90°.(1)尺規(guī)作圖:作線段AB的垂直平分線l,垂足為H.(保留作圖痕跡,不寫作法);(2)垂直平分線l交AC于點D,求證:AB=2DH.22.(8分)某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設(shè)計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.23.(8分)如圖,已知在△ABC中,AB=AC=5,cosB=,P是邊AB上一點,以P為圓心,PB為半徑的⊙P與邊BC的另一個交點為D,聯(lián)結(jié)PD、AD.(1)求△ABC的面積;(2)設(shè)PB=x,△APD的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(3)如果△APD是直角三角形,求PB的長.24.(10分)某化妝品店老板到廠家選購A、B兩種品牌的化妝品,若購進A品牌的化妝品5套,B品牌的化妝品6套,需要950元;若購進A品牌的化妝品3套,B品牌的化妝品2套,需要450元.(1)求A、B兩種品牌的化妝品每套進價分別為多少元?(2)若銷售1套A品牌的化妝品可獲利30元,銷售1套B品牌的化妝品可獲利20元;根據(jù)市場需求,店老板決定購進這兩種品牌化妝品共50套,且進貨價錢不超過4000元,應(yīng)如何選擇進貨方案,才能使賣出全部化妝品后獲得最大利潤,最大利潤是多少?25.(10分)如圖,在正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊上的動點,且AE=BF=CG=DH.(1)求證:△AEH≌△CGF;(2)在點E、F、G、H運動過程中,判斷直線EG是否經(jīng)過某一個定點,如果是,請證明你的結(jié)論;如果不是,請說明理由26.(12分)如圖,正六邊形ABCDEF在正三角形網(wǎng)格內(nèi),點O為正六邊形的中心,僅用無刻度的直尺完成以下作圖.(1)在圖1中,過點O作AC的平行線;(2)在圖2中,過點E作AC的平行線.27.(12分)如圖,在平面直角坐標(biāo)系中,直線y1=2x+b與坐標(biāo)軸交于A、B兩點,與雙曲線(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,點B的坐標(biāo)為(0,﹣2).(1)求直線y1=2x+b及雙曲線(x>0)的表達式;(2)當(dāng)x>0時,直接寫出不等式的解集;(3)直線x=3交直線y1=2x+b于點E,交雙曲線(x>0)于點F,求△CEF的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.17附近波動,即其概率P≈0.17,計算四個選項的概率,約為0.17者即為正確答案.【詳解】解:在“石頭、剪刀、布”的游戲中,小明隨機出剪刀的概率是,故A選項錯誤,擲一枚質(zhì)地均勻的正六面體骰子,向上一面的點數(shù)是4的概率是≈0.17,故B選項正確,一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃得概率是,故C選項錯誤,拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上的概率是,故D選項錯誤,故選B.【點睛】此題考查了利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率.頻率=所求情況數(shù)與總情況數(shù)之比.熟練掌握概率公式是解題關(guān)鍵.2、A【解析】

直接利用已知無理數(shù)得出的取值范圍,進而得出答案.【詳解】解:∵1<<2,∴1-2<﹣2<2-2,∴-1<﹣2<0即-2在-1和0之間.故選A.【點睛】此題主要考查了估算無理數(shù)大小,正確得出的取值范圍是解題關(guān)鍵.3、A【解析】

解:∵二次函數(shù)的圖象開口向上,∴a>1.∵對稱軸在y軸的左邊,∴<1.∴b>1.∵圖象與y軸的交點坐標(biāo)是(1,﹣2),過(1,1)點,代入得:a+b﹣2=1.∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣3,∵b>1,∴b=2﹣a>1.∴a<2.∵a>1,∴1<a<2.∴1<2a<3.∴﹣3<2a﹣3<1,即﹣3<P<1.故選A.【點睛】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系,利用數(shù)形結(jié)合思想解題是本題的解題關(guān)鍵.4、C【解析】

根據(jù)同底數(shù)冪的乘法,可判斷A、B,根據(jù)冪的乘方,可判斷C,根據(jù)同底數(shù)冪的除法,可判斷D.【詳解】A.a(chǎn)4?a3=a7,故A錯誤;B.3a?4a=12a2,故B錯誤;C.(a3)4=a12,故C正確;D.a(chǎn)12÷a3=a9,故D錯誤.故選C.【點睛】本題考查了同底數(shù)冪的除法,同底數(shù)冪的除法底數(shù)不變指數(shù)相減是解題的關(guān)鍵.5、A【解析】

利用配方法,根據(jù)非負數(shù)的性質(zhì)即可解決問題;【詳解】解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,

又∵(x+3)2≥0,(2y-1)2≥0,

∴x2+4y2+6x-4y+11≥1,

故選:A.【點睛】本題考查配方法的應(yīng)用,非負數(shù)的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握配方法.6、D【解析】

過O'作O'C⊥AB于點C,過O'作O'D⊥x軸于點D,由切線的性質(zhì)可求得O'D的長,則可得O'B的長,由垂徑定理可求得CB的長,在Rt△O'BC中,由勾股定理可求得O'C的長,從而可求得O'點坐標(biāo).【詳解】如圖,過O′作O′C⊥AB于點C,過O′作O′D⊥x軸于點D,連接O′B,∵O′為圓心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8?2=6,∴AC=BC=3,∴OC=8?3=5,∵⊙O′與x軸相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C===4,∴P點坐標(biāo)為(4,5),故選:D.【點睛】本題考查了切線的性質(zhì),坐標(biāo)與圖形性質(zhì),解題的關(guān)鍵是掌握切線的性質(zhì)和坐標(biāo)計算.7、C【解析】

過點C作,且CQ=CP,連接AQ,PQ,證明≌根據(jù)全等三角形的性質(zhì),得到根據(jù)等腰直角三角形的性質(zhì)求出PQ的長度,進而根據(jù),即可解決問題.【詳解】過點C作,且CQ=CP,連接AQ,PQ,在和中≌AP的最大值是5.故選:C.【點睛】考查全等三角形的判定與性質(zhì),三角形的三邊關(guān)系,作出輔助線是解題的關(guān)鍵.8、C【解析】

分別根據(jù)同底數(shù)冪相乘、同底數(shù)冪相除、冪的乘方的運算法則逐一計算可得.【詳解】A、a2?a3=a5,此選項不符合題意;

B、a12÷a2=a10,此選項不符合題意;

C、(a2)3=a6,此選項符合題意;

D、(-a2)3=-a6,此選項不符合題意;

故選C.【點睛】本題主要考查冪的運算,解題的關(guān)鍵是掌握同底數(shù)冪相乘、同底數(shù)冪相除、冪的乘方的運算法則.9、C【解析】

解:∵關(guān)于x的一元二次方程有實數(shù)根,∴△==,解得m≥1,故選C.【點睛】本題考查一元二次方程根的判別式.10、B【解析】

首先根據(jù)A,B兩點的橫坐標(biāo),求出A,B兩點的坐標(biāo),進而根據(jù)AC//BD//y軸,及反比例函數(shù)圖像上的點的坐標(biāo)特點得出C,D兩點的坐標(biāo),從而得出AC,BD的長,根據(jù)三角形的面積公式表示出S△OAC,S△ABD的面積,再根據(jù)△OAC與△ABD的面積之和為32【詳解】把x=1代入y=1∴A(1,1),把x=2代入y=1x得:y=∴B(2,12∵AC//BD//y軸,∴C(1,K),D(2,k2∴AC=k-1,BD=k2-1∴S△OAC=12S△ABD=12(k2-又∵△OAC與△ABD的面積之和為32∴12(k-1)×1+12(k2-1故答案為B.【點睛】:此題考查了反比例函數(shù)系數(shù)k的幾何意義,以及反比例函數(shù)圖象上點的坐標(biāo)特征,熟練掌握反比例函數(shù)k的幾何意義是解本題的關(guān)鍵.11、B【解析】

按照分式運算規(guī)則運算即可,注意結(jié)果的化簡.【詳解】解:原式=,故選擇B.【點睛】本題考查了分式的運算規(guī)則.12、C【解析】

利用正方體及其表面展開圖的特點解題.【詳解】解:A、B、D經(jīng)過折疊后,下邊沒有面,所以不可以圍成正方體,C能折成正方體.故選C.【點睛】本題考查了正方體的展開圖,解題時牢記正方體無蓋展開圖的各種情形.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】分析:根據(jù)同一時刻物高與影長成比例,列出比例式再代入數(shù)據(jù)計算即可.詳解:∵==,解得:旗桿的高度=×30=1.故答案為1.點睛:本題考查了相似三角形在測量高度時的應(yīng)用,解題時關(guān)鍵是找出相似的三角形,然后根據(jù)對應(yīng)邊成比例列出方程,建立數(shù)學(xué)模型來解決問題.14、2:1.【解析】

過點O作OE⊥AB于點E,延長EO交CD于點F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根據(jù)相似三角形對應(yīng)高的比等于相似比可得,由此即可求得答案.【詳解】如圖,過點O作OE⊥AB于點E,延長EO交CD于點F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,練習(xí)本中的橫格線都平行,且相鄰兩條橫格線間的距離都相等,∴=,故答案為:2:1.【點睛】本題考查了相似三角形的的判定與性質(zhì),熟練掌握相似三角形對應(yīng)高的比等于相似比是解本題的關(guān)鍵.15、1或-1【解析】方程可化為:,∴或,∴或.故答案為1或-1.16、①③⑤【解析】

①利用同角的余角相等,易得∠EAB=∠PAD,再結(jié)合已知條件利用SAS可證兩三角形全等;

②過B作BF⊥AE,交AE的延長線于F,利用③中的∠BEP=90°,利用勾股定理可求BE,結(jié)合△AEP是等腰直角三角形,可證△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;

③利用①中的全等,可得∠APD=∠AEB,結(jié)合三角形的外角的性質(zhì),易得∠BEP=90°,即可證;

④連接BD,求出△ABD的面積,然后減去△BDP的面積即可;

⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面積.【詳解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,

∴∠EAB=∠PAD,

又∵AE=AP,AB=AD,

∵在△APD和△AEB中,

,

∴△APD≌△AEB(SAS);

故此選項成立;

③∵△APD≌△AEB,

∴∠APD=∠AEB,

∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,

∴∠BEP=∠PAE=90°,

∴EB⊥ED;

故此選項成立;

②過B作BF⊥AE,交AE的延長線于F,

∵AE=AP,∠EAP=90°,

∴∠AEP=∠APE=45°,

又∵③中EB⊥ED,BF⊥AF,

∴∠FEB=∠FBE=45°,

又∵BE=

=

=

,

∴BF=EF=

,

故此選項不正確;

④如圖,連接BD,在Rt△AEP中,

∵AE=AP=1,

∴EP=

,

又∵PB=

,

∴BE=

,

∵△APD≌△AEB,

∴PD=BE=

,

∴S

△ABP+S

△ADP=S

△ABD-S

△BDP=

S

正方形ABCD-

×DP×BE=

×(4+

)-

×

×

=

+

故此選項不正確.

⑤∵EF=BF=

,AE=1,

∴在Rt△ABF中,AB

2=(AE+EF)

2+BF

2=4+

,

∴S

正方形ABCD=AB

2=4+

,

故此選項正確.

故答案為①③⑤.【點睛】本題考查了全等三角形的判定和性質(zhì)的運用、正方形的性質(zhì)的運用、正方形和三角形的面積公式的運用、勾股定理的運用等知識.17、1【解析】根據(jù)平均數(shù)為10求出x的值,再由眾數(shù)的定義可得出答案.解:由題意得,(2+3+1+1+x)=10,解得:x=31,這組數(shù)據(jù)中1出現(xiàn)的次數(shù)最多,則這組數(shù)據(jù)的眾數(shù)為1.故答案為1.18、20π【解析】解:=20πcm.故答案為20πcm.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)BE+DF=EF;(2)存在,BD的最大值為6;(3)存在,AC的最大值為2+2.【解析】

(1)作輔助線,首先證明△ABE≌△ADG,再證明△AEF≌△AEG,進而得到EF=FG問題即可解決;(2)將△ABD繞著點B順時針旋轉(zhuǎn)60°,得到△BCE,連接DE,由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根據(jù)DE<DC+CE,則當(dāng)D、C、E三點共線時,DE存在最大值,問題即可解決;(3)以BC為邊作等邊三角形BCE,過點E作EF⊥BC于點F,連接DE,由旋轉(zhuǎn)的性質(zhì)得△DBE是等邊三角形,則DE=AC,根據(jù)在等邊三角形BCE中,EF⊥BC,可求出BF,EF,以BC為直徑作⊙F,則點D在⊙F上,連接DF,可求出DF,則AC=DE≤DF+EF,代入數(shù)值即可解決問題.【詳解】(1)如圖①,延長CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案為:BE+DF=EF;(2)存在.在等邊三角形ABC中,AB=BC,∠ABC=60°,如圖②,將△ABD繞著點B順時針旋轉(zhuǎn)60°,得到△BCE,連接DE.由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等邊三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴當(dāng)D、C、E三點共線時,DE存在最大值,且最大值為6,∴BD的最大值為6;(3)存在.如圖③,以BC為邊作等邊三角形BCE,過點E作EF⊥BC于點F,連接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等邊三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC為直徑作⊙F,則點D在⊙F上,連接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值為2+2.【點睛】本題考查了全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì).20、+1【解析】分析:直接利用二次根式的性質(zhì)、負指數(shù)冪的性質(zhì)和特殊角的三角函數(shù)值分別化簡求出答案.詳解:原式=2﹣2+3﹣2×=2+1﹣=+1.點睛:本題主要考查了實數(shù)運算,正確化簡各數(shù)是解題的關(guān)鍵.21、(1)見解析;(2)證明見解析.【解析】

(1)利用線段垂直平分線的作法,分別以A,B為端點,大于為半徑作弧,得出直線l即可;

(2)利用利用平行線的性質(zhì)以及平行線分線段成比例定理得出點D是AC的中點,進而得出答案.【詳解】解:(1)如圖所示:直線l即為所求;

(2)證明:∵點H是AB的中點,且DH⊥AB,∴DH∥BC,∴點D是AC的中點,∵∴AB=2DH.【點睛】考查作圖—基本作圖,線段垂直平分線的性質(zhì),等腰三角形的性質(zhì)等,熟練掌握垂直平分線的性質(zhì)是解題的性質(zhì).22、(1);(2).【解析】

(1)直接根據(jù)概率公式求解即可;(2)根據(jù)題意先畫出樹狀圖,得出所有情況數(shù)和甲、乙兩位嘉賓能分為同隊的結(jié)果數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:(1)∵共有三根細繩,且抽出每根細繩的可能性相同,∴甲嘉賓從中任意選擇一根細繩拉出,恰好抽出細繩AA1的概率是=;(2)畫樹狀圖:共有9種等可能的結(jié)果數(shù),其中甲、乙兩位嘉賓能分為同隊的結(jié)果數(shù)為3種情況,則甲、乙兩位嘉賓能分為同隊的概率是.23、(1)12(2)y=(0<x<5)(3)或【解析】試題分析:(1)過點A作AH⊥BC于點H,根據(jù)cosB=求得BH的長,從而根據(jù)已知可求得AH的長,BC的長,再利用三角形的面積公式即可得;(2)先證明△BPD∽△BAC,得到=,再根據(jù),代入相關(guān)的量即可得;(3)分情況進行討論即可得.試題解析:(1)過點A作AH⊥BC于點H,則∠AHB=90°,∴cosB=,∵cosB=,AB=5,∴BH=4,∴AH=3,∵AB=AC,∴BC=2BH=8,∴S△ABC=×8×3=12(2)∵PB=PD,∴∠B=∠PDB,∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,∴△BPD∽△BAC,∴,即,解得=,∴,∴,解得y=(0<x<5);(3)∠APD<90°,過C作CE⊥AB交BA延長線于E,可得cos∠CAE=,①當(dāng)∠ADP=90°時,cos∠APD=cos∠CAE=,即,解得x=;②當(dāng)∠PAD=90°時,,解得x=,綜上所述,PB=或.【點睛】本題考查了相似三角形的判定與性質(zhì)、底在同一直線上且高相等的三角形面積的關(guān)系等,結(jié)合圖形及已知選擇恰當(dāng)?shù)闹R進行解答是關(guān)鍵.24、(1)A、B兩種品牌得化妝品每套進價分別為100元,75元;(2)A種品牌得化妝品購進10套,B種品牌得化妝品購進40套,才能使賣出全部化妝品后獲得最大利潤,最大利潤是1100元【解析】

(1)求A、B兩種品牌的化妝品每套進價分別為多少元,可設(shè)A種品牌的化妝品每套進價為x元,B種品牌的化妝品每套進價為y元.根據(jù)兩種購買方法,列出方程組解方程;(2)根據(jù)題意列出不等式,求出m的范圍,再用代數(shù)式表示出利潤,即可得出答案.【詳解】(1)設(shè)A種品牌的化妝品每套進價為x元,B種品牌的化妝品每套進價為y元.得解得:,答:A、B兩種品牌得化妝品每套進價分別為100元,75元.(2)設(shè)A種品牌得化妝品購進m套,則B種品牌得化妝品購進(50﹣m)套.根據(jù)題意得:100m+75(50﹣m)≤4000,且50﹣m≥0,解得,5≤m≤10,利潤是30m+20(50﹣m)=1000+10m,當(dāng)m取最大10時,利潤最大,最大利潤是1000+100=1100,所以A種品牌得化妝品購進10套,B種品牌得化妝品購進40套,才能使賣出全部化妝品后獲得最大利潤,最大利潤是1100元.【點睛】本題考查一元一次不等式組的應(yīng)用,將現(xiàn)實生活中的事件與數(shù)學(xué)思想聯(lián)系起來,讀懂題列出不等式關(guān)系式即可求解.25、(1)見解析;(2)直線EG經(jīng)過一個定點,這個定點為正方形的中心(AC、BD的交點);理由見解析.【解析】分析:(1)由正方形的性質(zhì)得出∠A=∠C=90°,AB=BC=CD=DA,由AE=BF=CG=DH證出AH=CF,由SAS證明△AEH≌△CGF即可求解;(2)連接AC、EG,交點為O;先證明△AOE≌△COG,得出OA=OC,證出O為對角線AC、BD的交點,即O為正方形的中心.詳解:(1)證明:∵四邊形ABCD是正方形,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論