三角函數(shù)中的參數(shù)范圍問題課件-2025屆高三數(shù)學一輪復習_第1頁
三角函數(shù)中的參數(shù)范圍問題課件-2025屆高三數(shù)學一輪復習_第2頁
三角函數(shù)中的參數(shù)范圍問題課件-2025屆高三數(shù)學一輪復習_第3頁
三角函數(shù)中的參數(shù)范圍問題課件-2025屆高三數(shù)學一輪復習_第4頁
三角函數(shù)中的參數(shù)范圍問題課件-2025屆高三數(shù)學一輪復習_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第四章三角函數(shù)、解三角形補上一課三角函數(shù)中的參數(shù)范圍問題INNOVATIVEDESIGN三角函數(shù)中的參數(shù)問題主要是指函數(shù)y=Asin(ωx+φ)中ω與φ的求解,或所涉及的區(qū)間端點參數(shù)的求解,一般是利用所給函數(shù)的單調(diào)性、奇偶性、對稱性等進行.題型一三角函數(shù)的單調(diào)性與ω的關(guān)系B感悟提升確定函數(shù)的單調(diào)區(qū)間,根據(jù)區(qū)間之間的包含關(guān)系,建立不等式,即可求ω的取值范圍.C所以ω=5符合題意,所以ω的最大值為5.題型二三角函數(shù)的對稱性與ω的關(guān)系CD又因為ω>0,所以ω的最小值為1,故ω可取的值為1,4.感悟提升C題型三三角函數(shù)的最值與ω的關(guān)系C感悟提升利用三角函數(shù)的最值與對稱軸或周期的關(guān)系,可以列出關(guān)于ω的不等式(組),進而求出ω的值或取值范圍.題型四三角函數(shù)的零點與ω的關(guān)系例4

(2023·新高考Ⅰ卷)已知函數(shù)f(x)=cosωx-1(ω>0)在區(qū)間[0,2π]有且僅有3個零點,則ω的取值范圍是________.[2,3)解析法一函數(shù)f(x)=cosωx-1在區(qū)間[0,2π]有且僅有3個零點,即cosωx=1在區(qū)間[0,2π]有且僅有3個根,因為ω>0,x∈[0,2π],所以ωx∈[0,2ωπ],則由余弦函數(shù)的圖象可知,4π≤2ωπ<6π,解得2≤ω<3,即ω的取值范圍是[2,3).法二函數(shù)f(x)=cosωx-1在區(qū)間[0,2π]有且僅有3個零點,即cosωx=1在區(qū)間[0,2π]有且僅有3個根,根據(jù)函數(shù)y=cosx在[0,2π]上的圖象可知cosx=1在區(qū)間[0,2π]有2個根,所以若cosωx=1在區(qū)間[0,2π]有且僅有3個根,則函數(shù)y=cosωx在[0,2π]內(nèi)至少包含2個周期,但小于3個周期,感悟提升C課時分層精練KESHIFENCENGJINGLIANACBBDCDB223B解析易知ω≠0,因為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論