數學(人教版選修12)練習綜合質量評估_第1頁
數學(人教版選修12)練習綜合質量評估_第2頁
數學(人教版選修12)練習綜合質量評估_第3頁
數學(人教版選修12)練習綜合質量評估_第4頁
數學(人教版選修12)練習綜合質量評估_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

綜合質量評估(時間:120分鐘滿分:150分)一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的)1.若復數z=a+i的實部與虛部相等,則實數a=()A.-1 B.1C.-2 D.2解析:復數z=a+i的實部為a,虛部為1,則a=1.答案:B2.有人發(fā)現,多看電視容易使人變冷漠,下表是一個調查機構對此現象的調查結果:冷漠不冷漠總計多看電視6842110少看電視203858總計8880168則在犯錯誤的概率不超過多少的前提下認為多看電視與人變冷漠有關系.()A.0.001 B.0.025C.0.05 D.0.01解析:可計算k≈11.377>10.828,故在犯錯誤的概率不超過0.001的前提下認為多看電視與人變冷漠有關系.答案:A3.有一段演繹推理:直線平行于平面,則平行于平面內所有直線;已知直線b?平面α,直線a?平面α,直線b∥平面α,則直線b∥直線a.這個結論顯然是錯誤的,這是因為()A.大前提錯誤 B.小前提錯誤C.推理形式錯誤 D.非以上錯誤解析:大前提錯誤,直線平行于平面,未必有直線平行于平面內的所有直線.答案:A4.下列有關樣本相關系數的說法不正確的是()A.相關系數用來衡量x與y的之間的線性相關程度B.|r|≤1,且|r|越接近0,相關程度越小C.|r|≤1,且|r|越接近1,相關程度越大D.|r|≥1,且|r|越接近1,相關程度越大解析:由相關系數的概念可知:相關系數用來衡量x與y的之間的線性相關程度,|r|≤1,且|r|越接近0,相關程度越小,|r|越接近1,相關程度越大.答案:D5.在獨立性檢驗中,隨機變量K2有兩個臨界值:3.841和6.635;當K2>3.841時,有95%的把握說明兩個事件有關,當K2>6.635時,有99%的把握說明兩個事件有關,當K2≤3.841時,認為兩個事件無關,在一項打鼾與患心臟病的調查中,共調查了2000人,經計算得k=20.87,根據這一數據分析()A.在犯錯誤的概率不超過0.05的前提下,認為打鼾與患心臟病有關B.約有95%的打鼾者患心臟病C.在犯錯誤的概率不超過0.01的前提下,認為打鼾與患心臟病有關D.約有99%的打鼾者患心臟病解析:因為k=20.87>6.635.根據P(K2>6.635)=0.01可知,應在犯錯誤的概率不超過0.01的前提下認為打鼾與患心臟病之間有關.答案:C6.將x=2輸入以下程序框圖,若輸入x=2,則輸出的結果是()A.3 B.5C.8 D.12解析:由題意知該程序框圖的作用即為求一個分段函數y=eq\b\lc\{\rc\(\a\vs4\al\co1(2x-1x<0,x2+10≤x<1,x3+2xx≥1))的值,將x=2代入上述函數表達式,顯然2≥1,故將x=2代入y=x3+2x得y=12.答案:D7.設△ABC的三邊長分別為a,b,c,△ABC的面積為S,內切圓半徑為r,則r=eq\f(2S,a+b+c),類比這個結論可知:四面體S-ABC的四個面的面積分別為S1,S2,S3,S4,內切球半徑為R,四面體S-ABC的體積為V,則R=()A.eq\f(V,S1+S2+S3+S4) B.eq\f(2V,S1+S2+S3+S4)C.eq\f(3V,S1+S2+S3+S4) D.eq\f(4V,S1+S2+S3+S4)解析:四面體中以內切球的球心為頂點,四面體的各個面為底面,可把四面體分割成四個高均為R的三棱錐,從而有eq\f(1,3)S1R+eq\f(1,3)S2R+eq\f(1,3)S3R+eq\f(1,3)S4R=V.即(S1+S2+S3+S4)R=3V.∴R=eq\f(3V,S1+S2+S3+S4).答案:C8.已知x,y的值如表所示,若y與x呈線性相關且回歸直線方程為y=eq\f(1,4)x+eq\f(7,2),則a=()x468y5a6A.4 B.5C.6 D.7解析:由題意可得eq\o(x,\s\up6(-))=eq\f(1,3)×(4+6+8)=6,eq\o(y,\s\up6(-))=eq\f(1,3)(5+a+6),由于回歸直線y=eq\f(1,4)x+eq\f(7,2)過點(eq\o(x,\s\up6(-)),eq\o(y,\s\up6(-))),故eq\f(1,3)×(5+a+6)=eq\f(1,4)×6+eq\f(7,2),解得a=4.答案:A9.按如圖所示的程序框圖運行后,輸出的結果是63,則判斷框中的整數M的值是()A.5 B.6C.7 D.8解析:按框圖所示程序運行可得S=1,A=1;S=3,A=2;S=7,A=3;S=15,A=4;S=31,A=5;S=63,A=6.此時輸出S,故M為6.故選B.答案:B10.為了解兒子身高與其父親身高的關系,隨機抽取5對父子的身高數據如下:父親身高x(cm)174176176176178兒子身高y(cm)175175176177177則y對x的線性回歸方程為()A.y=x-1 B.y=x+1C.y=88+eq\f(1,2)x D.y=176解析:因為eq\o(x,\s\up6(-))=eq\f(174+176+176+176+178,5)=176,eq\o(y,\s\up6(-))=eq\f(175+175+176+177+177,5)=176,而回歸方程經過樣本中心點,所以排除A、B;又身高的整體變化趨勢隨x的增大而增大,排除D,所以選C.答案:C11.設0<x<1,a>0,b>0,a,b為常數,eq\f(a2,x)+eq\f(b2,1-x)的最小值是()A.4ab B.2(a2+b2)C.(a+b)2 D.(a-b)2解析:eq\f(a2,x)+eq\f(b2,1-x)(x+1-x)=a2+eq\f(a21-x,x)+eq\f(b2x,1-x)+b2≥a2+b2+2ab=(a+b)2.當且僅當x=eq\f(a,a+b)時,等號成立.故選C.答案:C12.將石子擺成如圖的梯形形狀,稱數列5,9,14,20,…為“梯形數列”.根據圖形的構成,此數列的第2012項與5的差,即a2012-5=()A.1009×2011 B.1009×2010C.1009×2009 D.1010×2011解析:由給出的三個圖形可知,第n個圖形中共有2+3+4+…+(n+2)=eq\f(n+4n+1,2)個點,因此數列的第2012項為a2012=eq\f(2016×2013,2),于是a2012-5=eq\f(2016×2013,2)-5=1008×2013-5=1009×2013-2013-5=1009×2011+2018-2013-5=1009×2011.答案:A二、填空題(本大題共4小題,每小題5分,共20分.把答案填在題中橫線上)13.若回歸直線方程的斜率的估計值是1.23,樣本點的中心為(4,5),則回歸直線方程是________.解析:由條件知,eq\o(x,\s\up6(-))=4,eq\o(y,\s\up6(-))=5.設回歸直線方程為y=1.23x+a,則a=y(tǒng)-1.23eq\o(x,\s\up6(-))=0.08.故回歸直線的方程是y=1.23x+0.08.答案:y=1.23x+0.0814.為解決四個村莊用電問題,政府投資在已建電廠與四個村莊之間架設輸電線路,現已知這四個村莊及電廠之間的距離如圖(距離單位:km),則能把電力輸送到這四個村莊的輸電線路最短總長度應該是________km.解析:要使電廠與四個村莊相連,則需四條線路,注意最短的四條線路能使電廠與四個村莊相連,∴4+5+5.5+6=20.5答案:20.515.f(n)=1+eq\f(1,2)+eq\f(1,3)+…+eq\f(1,n)(n∈N*),計算得f(2)=eq\f(3,2),f(4)>2,f(8)>eq\f(5,2),f(16)>3,f(32)>eq\f(7,2),推測當n≥2時,有________.解析:f(4)=f(22)>eq\f(2+2,2),f(8)=f(23)>eq\f(3+2,2),f(16)=f(24)>eq\f(4+2,2),f(32)=f(25)>eq\f(5+2,2),…可推測當n≥2時,有f(2n)>eq\f(n+2,2).答案:f(2n)>eq\f(n+2,2)16.已知函數y=eq\b\lc\{\rc\(\a\vs4\al\co1(log2x,x≥2,,2-x,x<2.))如圖表示的是給定x的值,求其對應的函數值y的程序框圖.①處應填寫________;②處應填寫________.解析:框圖中的①就是分段函數解析式兩種形式的判斷條件,故填寫“x<2?”,②就是函數的另一段表達式y(tǒng)=log2x.答案:x<2?y=log2x三、解答題(本大題共6小題,共70分.解答應寫出文字說明、證明過程或演算步驟)17.(本小題滿分10分)已知復數z=(m2-8m+15)+(m2-9m+18)i在復平面內表示的點為A,實數m(1)z為純虛數?(2)A位于第三象限?解:(1)當m2-8m+15=0,m2-9m+18≠0即m=5時,z(2)當eq\b\lc\{\rc\(\a\vs4\al\co1(m2-8m+15<0,m2-9m+18<0))即eq\b\lc\{\rc\(\a\vs4\al\co1(3<m<5,3<m<6)),即3<m<5時,對應點在第三象限.18.(本小題滿分12分)畫出求形如eq\f(c,x+a)=eq\f(d,x+b)的分式方程的解的流程圖,其中a,b,c,d是已知數且均非零.解析:具體流程圖如下圖所示:19.(本小題滿分12分)已知sin230°+sin290°+sin2150°=eq\f(3,2),sin25°+sin265°+sin2125°=eq\f(3,2),通過觀察上述兩個等式的規(guī)律,請你寫出一般性的結論,并給出證明.解:一般形式:sin2α+sin2(α+60°)+sin2(α+120°)=eq\f(3,2).證明如下:左邊=eq\f(1-cos2α,2)+eq\f(1-cos2α+120°,2)+eq\f(1-cos2α+240°,2)=eq\f(3,2)-eq\f(1,2)[cos2α+cos(2α+120°)+cos(2α+240°)]=eq\f(3,2)-eq\f(1,2)[cos2α+cos2αcos120°-sin2αsin120°+cos2αcos240°-sin2αsin240°]=eq\f(3,2)-eq\f(1,2)eq\b\lc\[\rc\](\a\vs4\al\co1(cos2α-\f(1,2)cos2α-\f(\r(3),2)sin2α-\f(1,2)cos2α+\f(\r(3),2)sin2α))=eq\f(3,2)=右邊.將一般形式寫成sin2(α-60°)+sin2α+sin2(α+60°)=eq\f(3,2)等均正確20.(本小題滿分12分)大家知道,莫言是中國首位獲得諾貝爾獎的文學家,國人歡欣鼓舞.某高校文學社從男女生中各抽取50名同學調查對莫言作品的了解程度,結果如下:閱讀過莫言的作品數(篇)0~2526~5051~7576~100101~130男生36111812女生48131510(1)試估計該校學生閱讀莫言作品超過50篇的概率;(2)對莫言作品閱讀超過75篇的則稱為“對莫言作品非常了解”,否則為“一般了解”.根據題意完成下列的列聯(lián)表,并判斷能否有75%的把握認為對莫言作品的非常了解與性別有關?非常了解一般了解合計男生女生合計附:K2=eq\f(nad-bc2,a+bc+da+cb+d)P(K2≥k0)0.500.400.250.150.100.050.0250.010k00.4550.7081.3232.0722.7063.8415.0246.635解:(1)由抽樣調查閱讀莫言作品在50篇以上的頻率為eq\f(11+18+12+13+15+10,50+50)=eq\f(79,100),據此估計該校學生閱讀莫言作品超過50篇的概率約為P=eq\f(79,100).(2)填表如下:非常了解一般了解合計男生302050女生252550合計5545100根據列聯(lián)表數據得k=eq\f(100×30×25-20×252,50×50×55×45)≈1.010<1.323.所以沒有75%的把握認為對莫言作品的非常了解與性別有關.21.(本小題滿分12分)一臺機器由于使用時間較長,但還可以用,它按不同的轉速生產出來的某機械零件有一些會有缺點,每小時生產有缺點零件的多少隨機器運轉的速度而變化,下表為抽樣試驗結果.轉速x(rad/s)1614128每小時生產有缺點的零件數y(件)11985(1)畫出散點圖.(2)如果y與x有線性相關關系,求線性回歸方程.(3)若實際生產中,允許每小時生產出的產品中有缺點的零件最多為10件,那么機器的運轉速度應控制在什么范圍內?解:(1)畫出散點圖,如圖.(2)eq\o(x,\s\up6(-))=12.5,eq\o(y,\s\up6(-))=8.25,eq\i\su(i=1,4,x)iyi=438,eq\i\su(i=1,4,x)eq\o\al(2,i)=660,所以eq\o(b,\s\up6(^))=eq\f(\i\su(i=1,4,x)iyi-4\o(x,\s\up6(-))·\o(y,\s\up6(-)),\i\su(i=1,4,x)\o\al(2,i)-4\o(x,\s\up6(-))2)=eq\f(438-4×12.5×8.25,660-4×12.52)≈0.7286,eq\o(a,\s\up6(^))=eq\o(y,\s\up6(-))-eq\o(b,\s\up6(^))eq\o(x,\s\up6(-))≈8.25-0.7286×12.5=-0.8575.所以線性回歸方程為eq\o(y,\s\up6(^))=0.7286x-0.8575.(3)要使eq\o(y,\s\up6(^))≤10,則0.7286x-0.8575≤10,x≤14.9019≈15.所以機器的轉速應控制在15rad/s以下.22.(本小題滿分12分)在中學生綜合素質評價某個維度的測評中,分“優(yōu)秀、合格、尚待改進”三個等級進行學生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結果的影響,采用分層抽樣方法從高一年級抽取了45名學生的測評結果,并作出頻數統(tǒng)計表如下:表1:男生等級優(yōu)秀合格尚待改進頻數15x5表2:女生等級優(yōu)秀合格尚待改進頻數153y(1)從表二的非優(yōu)秀學生中隨機選取2人交

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論