版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆海南省??谥袑W中考數(shù)學適應性模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列計算正確的是()A. B.0.00002=2×105C. D.2.我市連續(xù)7天的最高氣溫為:28°,27°,30°,33°,30°,30°,32°,這組數(shù)據(jù)的平均數(shù)和眾數(shù)分別是()A.28°,30° B.30°,28° C.31°,30° D.30°,30°3.已知拋物線y=ax2+bx+c與x軸交于點A和點B,頂點為P,若△ABP組成的三角形恰為等腰直角三角形,則b2﹣4ac的值為()A.1 B.4 C.8 D.124.如圖,已知點A,B分別是反比例函數(shù)y=(x<0),y=(x>0)的圖象上的點,且∠AOB=90°,tan∠BAO=,則k的值為()A.2 B.﹣2 C.4 D.﹣45.不等式組的解集表示在數(shù)軸上正確的是()A. B. C. D.6.若分式有意義,則a的取值范圍為()A.a≠4 B.a>4 C.a<4 D.a=47.在下列實數(shù)中,﹣3,,0,2,﹣1中,絕對值最小的數(shù)是()A.﹣3 B.0 C. D.﹣18.如圖,△ABC是等邊三角形,點P是三角形內的任意一點,PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為12,則PD+PE+PF=()A.12 B.8 C.4 D.39.下列各數(shù):π,sin30°,﹣,其中無理數(shù)的個數(shù)是()A.1個 B.2個 C.3個 D.4個10.一艘輪船和一艘漁船同時沿各自的航向從港口O出發(fā),如圖所示,輪船從港口O沿北偏西20°的方向行60海里到達點M處,同一時刻漁船已航行到與港口O相距80海里的點N處,若M、N兩點相距100海里,則∠NOF的度數(shù)為()A.50° B.60° C.70° D.80°11.在一個不透明的口袋中裝有4個紅球和若干個白球,他們除顏色外其他完全相同.通過多次摸球實驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%附近,則口袋中白球可能有()A.16個 B.15個 C.13個 D.12個12.已知拋物線y=x2-2mx-4(m>0)的頂點M關于坐標原點O的對稱點為M′,若點M′在這條拋物線上,則點M的坐標為()A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)二、填空題:(本大題共6個小題,每小題4分,共24分.)13.欣欣超市為促銷,決定對A,B兩種商品統(tǒng)一進行打8折銷售,打折前,買6件A商品和3件B商品需要54元,買3件A商品和4件B商品需要32元,打折后,小敏買50件A商品和40件B商品僅需________元.14.如圖,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,點F在邊AC上,并且CF=2,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,則點P到邊AB距離的最小值是_________.15.(2016遼寧省沈陽市)如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是______.16.(11·湖州)如圖,已知A、B是反比例函數(shù)(k>0,x<0)圖象上的兩點,BC∥x軸,交y軸于點C.動點P從坐標原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C.過P作PM⊥x軸,PN⊥y軸,垂足分別為M、N.設四邊形OMPN的面積為S,P點運動時間為t,則S關于t的函數(shù)圖象大致為17.如圖,PA,PB分別為的切線,切點分別為A、B,,則______.18.如圖,已知雙曲線經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(-6,4),則△AOC的面積為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在一個不透明的布袋中裝兩個紅球和一個白球,這些球除顏色外均相同(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是.(2)甲、乙、丙三人依次從袋中摸出一個球,記錄顏色后不放回,試求出乙摸到白球的概率20.(6分)已知點E是矩形ABCD的邊CD上一點,BF⊥AE于點F,求證△ABF∽△EAD.21.(6分)如圖,已知點A,B的坐標分別為(0,0)、(2,0),將△ABC繞C點按順時針方向旋轉90°得到△A1B1C.(1)畫出△A1B1C;(2)A的對應點為A1,寫出點A1的坐標;(3)求出B旋轉到B1的路線長.22.(8分)如圖,AB是圓O的直徑,AC是圓O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=2.(1)求∠A的度數(shù).(2)求圖中陰影部分的面積.23.(8分)近幾年購物的支付方式日益增多,某數(shù)學興趣小組就此進行了抽樣調查.調查結果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內購買者的支付方式進行調查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:本次一共調查了多少名購買者?請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為度.若該超市這一周內有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?24.(10分)某市政府大力支持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量Y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):y=﹣10x+1.設李明每月獲得利潤為W(元),當銷售單價定為多少元時,每月獲得利潤最大?根據(jù)物價部門規(guī)定,這種護眼臺燈不得高于32元,如果李明想要每月獲得的利潤2000元,那么銷售單價應定為多少元?25.(10分)如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.(1)求該拋物線的解析式;(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標;若不存在,請說明理由;(3)當0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).26.(12分)已知:如圖,∠ABC,射線BC上一點D.求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內部,且點P到∠ABC兩邊的距離相等.27.(12分)為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設置了體育類、藝術類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:(1)此次共調查了多少人?(2)求文學社團在扇形統(tǒng)計圖中所占圓心角的度數(shù);(3)請將條形統(tǒng)計圖補充完整;(4)若該校有1500名學生,請估計喜歡體育類社團的學生有多少人?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
在完成此類化簡題時,應先將分子、分母中能夠分解因式的部分進行分解因式.有些需要先提取公因式,而有些則需要運用公式法進行分解因式.通過分解因式,把分子分母中能夠分解因式的部分,分解成乘積的形式,然后找到其中的公因式約去.【詳解】解:A、原式=;故本選項錯誤;B、原式=2×10-5;故本選項錯誤;C、原式=;故本選項錯誤;D、原式=;故本選項正確;故選:D.【點睛】分式的乘除混合運算一般是統(tǒng)一為乘法運算,如果有乘方,還應根據(jù)分式乘方法則先乘方,即把分子、分母分別乘方,然后再進行乘除運算.同樣要注意的地方有:一是要確定好結果的符號;二是運算順序不能顛倒.2、D【解析】試題分析:數(shù)據(jù)28°,27°,30°,33°,30°,30°,32°的平均數(shù)是(28+27+30+33+30+30+32)÷7=30,30出現(xiàn)了3次,出現(xiàn)的次數(shù)最多,則眾數(shù)是30;故選D.考點:眾數(shù);算術平均數(shù).3、B【解析】
設拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),利用二次函數(shù)的性質得到P(-,),利用x1、x2為方程ax2+bx+c=0的兩根得到x1+x2=-,x1?x2=,則利用完全平方公式變形得到AB=|x1-x2|=,接著根據(jù)等腰直角三角形的性質得到||=?,然后進行化簡可得到b2-1ac的值.【詳解】設拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),頂點P的坐標為(-,),則x1、x2為方程ax2+bx+c=0的兩根,∴x1+x2=-,x1?x2=,∴AB=|x1-x2|====,∵△ABP組成的三角形恰為等腰直角三角形,
∴||=?,=,∴b2-1ac=1.故選B.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數(shù)的性質和等腰直角三角形的性質.4、D【解析】
首先過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,易得△OBD∽△AOC,又由點A,B分別在反比例函數(shù)y=(x<0),y=(x>0)的圖象上,即可得S△OBD=,S△AOC=|k|,然后根據(jù)相似三角形面積的比等于相似比的平方,即可求出k的值【詳解】解:過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
又∵∠AOB=90°,tan∠BAO=,
∴=,
∴=,即,
解得k=±4,
又∵k<0,
∴k=-4,
故選:D.【點睛】此題考查了相似三角形的判定與性質、反比例函數(shù)的性質以及直角三角形的性質.解題時注意掌握數(shù)形結合思想的應用,注意掌握輔助線的作法。5、C【解析】
根據(jù)題意先解出的解集是,把此解集表示在數(shù)軸上要注意表示時要注意起始標記為空心圓圈,方向向右;表示時要注意方向向左,起始的標記為實心圓點,綜上所述C的表示符合這些條件.故應選C.6、A【解析】
分式有意義時,分母a-4≠0【詳解】依題意得:a?4≠0,解得a≠4.故選:A【點睛】此題考查分式有意義的條件,難度不大7、B【解析】|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴絕對值最小的數(shù)是0,故選:B.8、C【解析】
過點P作平行四邊形PGBD,EPHC,進而利用平行四邊形的性質及等邊三角形的性質即可.【詳解】延長EP、FP分別交AB、BC于G、H,則由PD∥AB,PE∥BC,PF∥AC,可得,四邊形PGBD,EPHC是平行四邊形,∴PG=BD,PE=HC,又△ABC是等邊三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等邊三角形,∴PF=PG=BD,PD=DH,又△ABC的周長為12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故選C.【點睛】本題主要考查了平行四邊形的判定及性質以及等邊三角形的判定及性質,等邊三角形的性質:等邊三角形的三個內角都相等,且都等于60°.9、B【解析】
根據(jù)無理數(shù)的三種形式:①開方開不盡的數(shù),②無限不循環(huán)小數(shù),③含有π的數(shù),找出無理數(shù)的個數(shù)即可.【詳解】sin30°=,=3,故無理數(shù)有π,-,故選:B.【點睛】本題考查了無理數(shù)的知識,解答本題的關鍵是掌握無理數(shù)的三種形式:①開方開不盡的數(shù),②無限不循環(huán)小數(shù),③含有π的數(shù).10、C【解析】
解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故選C.【點睛】本題考查直角三角形的判定,掌握方位角的定義及勾股定理逆定理是本題的解題關鍵.11、D【解析】
由摸到紅球的頻率穩(wěn)定在25%附近得出口袋中得到紅色球的概率,進而求出白球個數(shù)即可.【詳解】解:設白球個數(shù)為:x個,
∵摸到紅色球的頻率穩(wěn)定在25%左右,
∴口袋中得到紅色球的概率為25%,
∴,
解得:x=12,
經(jīng)檢驗x=12是原方程的根,
故白球的個數(shù)為12個.
故選:D.【點睛】本題考查了利用頻率估計概率,根據(jù)大量反復試驗下頻率穩(wěn)定值即概率得出是解題的關鍵.12、C【解析】試題分析:=,∴點M(m,﹣m2﹣1),∴點M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故選C.考點:二次函數(shù)的性質.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
設A、B兩種商品的售價分別是1件x元和1件y元,根據(jù)題意列出x和y的二元一次方程組,解方程組求出x和y的值,進而求解即可.【詳解】解:設A、B兩種商品的售價分別是1件x元和1件y元,根據(jù)題意得,解得.所以0.8×(8×50+2×40)=1(元).即打折后,小敏買50件A商品和40件B商品僅需1元.故答案為1.【點睛】本題考查了利用二元一次方程組解決現(xiàn)實生活中的問題.解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程組,再求解.14、.【解析】
延長FP交AB于M,當FP⊥AB時,點P到AB的距離最?。\用勾股定理求解.【詳解】解:如圖,延長FP交AB于M,當FP⊥AB時,點P到AB的距離最?。逜C=6,CF=1,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=AF=1,∴FM==1,∵FP=FC=1,∴PM=MF-PF=1-1,∴點P到邊AB距離的最小值是1-1.故答案為:1-1.【點睛】本題考查了翻折變換,涉及到的知識點有直角三角形兩銳角互余、勾股定理等,解題的關鍵是確定出點P的位置.15、或.【解析】由圖可知,在△OMN中,∠OMN的度數(shù)是一個定值,且∠OMN不為直角.故當∠ONM=90°或∠MON=90°時,△OMN是直角三角形.因此,本題需要按以下兩種情況分別求解.(1)當∠ONM=90°時,則DN⊥BC.過點E作EF⊥BC,垂足為F.(如圖)∵在Rt△ABC中,∠A=90°,AB=AC,∴∠C=45°,∵BC=20,∴在Rt△ABC中,,∵DE是△ABC的中位線,∴,∴在Rt△CFE中,,.∵BM=3,BC=20,F(xiàn)C=5,∴MF=BC-BM-FC=20-3-5=12.∵EF=5,MF=12,∴在Rt△MFE中,,∵DE是△ABC的中位線,BC=20,∴,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴,∴在Rt△ODE中,.(2)當∠MON=90°時,則DN⊥ME.過點E作EF⊥BC,垂足為F.(如圖)∵EF=5,MF=12,∴在Rt△MFE中,,∴在Rt△MFE中,,∵∠DEO=∠EMF,∴,∵DE=10,∴在Rt△DOE中,.綜上所述,DO的長是或.故本題應填寫:或.點睛:在解決本題的過程中,難點在于對直角三角形中直角的分類討論;關鍵點是通過等角代換將一個在原直角三角形中不易求得的三角函數(shù)值轉換到一個容易求解的直角三角形中進行求解.另外,本題也可以用相似三角形的方法進行求解,不過利用銳角三角函數(shù)相對簡便.16、A【解析】試題分析:①當點P在OA上運動時,OP=t,S=OM?PM=tcosα?tsinα,α角度固定,因此S是以y軸為對稱軸的二次函數(shù),開口向上;②當點P在AB上運動時,設P點坐標為(x,y),則S=xy=k,為定值,故B、D選項錯誤;③當點P在BC上運動時,S隨t的增大而逐漸減小,故C選項錯誤.故選A.考點:1.反比例函數(shù)綜合題;2.動點問題的函數(shù)圖象.17、50°【解析】
由PA與PB都為圓O的切線,利用切線長定理得到,再利用等邊對等角得到一對角相等,由頂角的度數(shù)求出底角的度數(shù),再利用弦切角等于夾弧所對的圓周角,可得出,由的度數(shù)即可求出的度數(shù).【詳解】解:,PB分別為的切線,
,,
又,
,
則.
故答案為:【點睛】此題考查了切線長定理,切線的性質,以及等腰三角形的性質,熟練掌握定理及性質是解本題的關鍵.18、2【解析】解:∵OA的中點是D,點A的坐標為(﹣6,4),∴D(﹣1,2),∵雙曲線y=經(jīng)過點D,∴k=﹣1×2=﹣6,∴△BOC的面積=|k|=1.又∵△AOB的面積=×6×4=12,∴△AOC的面積=△AOB的面積﹣△BOC的面積=12﹣1=2.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2).【解析】
(1)直接利用概率公式求解;
(2)畫樹狀圖展示所有6種等可能的結果數(shù),再找出乙摸到白球的結果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是;
故答案為:;
(2)畫樹狀圖為:
共有6種等可能的結果數(shù),其中乙摸到白球的結果數(shù)為2,
所以乙摸到白球的概率==.【點睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式求事件A或B的概率.20、證明見解析【解析】試題分析:先利用等角的余角相等得到根據(jù)有兩組角對應相等,即可證明兩三角形相似.試題解析:∵四邊形為矩形,于點F,點睛:兩組角對應相等,兩三角形相似.21、(1)畫圖見解析;(2)A1(0,6);(3)弧BB1=.【解析】
(1)根據(jù)旋轉圖形的性質首先得出各點旋轉后的點的位置,然后順次連接各點得出圖形;(2)根據(jù)圖形得出點的坐標;(3)根據(jù)弧長的計算公式求出答案.【詳解】解:(1)△A1B1C如圖所示.(2)A1(0,6).(3).【點睛】本題考查了旋轉作圖和弧長的計算.22、(1)∠A=30°;(2)【解析】
(1)連接OC,由過點C的切線交AB的延長線于點D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD度數(shù)及OC長度,即可求出圖中陰影部分的面積.【詳解】解:(1)連結OC∵CD為⊙O的切線∴OC⊥CD∴∠OCD=90°又∵OA=OC∴∠A=∠ACO又∵∠A=∠D∴∠A=∠ACO=∠D而∠A+∠ACD+∠D=180°﹣90°=90°∴∠A=30°(2)由(1)知:∠D=∠A=30°∴∠COD=60°又∵CD=2∴OC=2∴S陰影=.【點睛】本題考查的知識點是扇形面積的計算及切線的性質,解題的關鍵是熟練的掌握扇形面積的計算及切線的性質.23、(1)本次一共調查了200名購買者;(2)補全的條形統(tǒng)計圖見解析,A種支付方式所對應的圓心角為108;(3)使用A和B兩種支付方式的購買者共有928名.【解析】分析:(1)根據(jù)B的數(shù)量和所占的百分比可以求得本次調查的購買者的人數(shù);(2)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得選擇A和D的人數(shù),從而可以將條形統(tǒng)計圖補充完整,求得在扇形統(tǒng)計圖中A種支付方式所對應的圓心角的度數(shù);(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以計算出使用A和B兩種支付方式的購買者共有多少名.詳解:(1)56÷28%=200,即本次一共調查了200名購買者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),補全的條形統(tǒng)計圖如圖所示,在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為:360°×=108°,(3)1600×=928(名),答:使用A和B兩種支付方式的購買者共有928名.點睛:本題考查扇形統(tǒng)計圖、條形統(tǒng)計圖、用樣本估計總體,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.24、(1)35元;(2)30元.【解析】
(1)由題意得,每月銷售量與銷售單價之間的關系可近似看作一次函數(shù),利潤=(定價-進價)×銷售量,從而列出關系式,利用配方法得出最值;(2)令w=2000,然后解一元二次方程,從而求出銷售單價.【詳解】解:(1)由題意,得:W=(x-20)×y=(x-20)(-10x+1)=-10x2+700x-10000=-10(x-35)2+2250當x=35時,W取得最大值,最大值為2250,答:當銷售單價定為35元時,每月可獲得最大利潤為2250元;(2)由題意,得:,解得:,,銷售單價不得高于32元,銷售單價應定為30元.答:李明想要每月獲得2000元的利潤,銷售單價應定為30元.【點睛】本題考查二次函數(shù)的性質及其應用,還考查拋物線的基本性質,另外將實際問題轉化為求函數(shù)最值問題,從而來解決實際問題.25、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點坐標為(,)時,△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標,利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點坐標及對稱軸,可設出M點坐標,表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關于M點坐標的方程,可求得M點的坐標;(3)過E作EF⊥x軸,交直線BC于點F,交x軸于點D,可設出E點坐標,表示出F點的坐標,表示出EF的長,進一步可表示出△CBE的面積,利用二次函數(shù)的性質可求得其取得最大值時E點的坐標.試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點B、點C,∴B(3,0),C(0,3),把B、C坐標代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對稱軸為x=2,P(2,﹣1),設
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 擠壓模擬課程設計
- 銀行支行的行政后勤工作綜述
- 寵物服務員工作總結
- 港口貨物裝卸合同三篇
- 三年級科學學科的教學工作總結
- 門診護士年終總結
- 【八年級下冊歷史】期中達標測試卷
- 2024年統(tǒng)計員年終工作總結篇
- 2024-2025學年北京門頭溝區(qū) 初三(上)期末物物理試卷(含答案)
- 分包采購委托合同(2篇)
- 2025年云南昆明經(jīng)濟技術開發(fā)區(qū)投資開發(fā)(集團)有限公司招聘筆試參考題庫附帶答案詳解
- HSE基礎知識培訓
- 安徽省蚌埠市2023-2024學年高一上學期期末考試 地理 含答案
- GB/T 5483-2024天然石膏
- 2024年度托管班二人合伙協(xié)議書3篇
- 山東中醫(yī)藥大學中西醫(yī)臨床(專升本)學士學位考試復習題
- 2024-2025學年九年級語文上冊部編版期末綜合模擬試卷(含答案)
- 鄉(xiāng)村振興暨干部素質提升培訓班學習心得體會
- IATF16949:2024標準質量手冊
- 飼料加工混凝土施工合同
- 會議會務服務投標方案投標文件(技術方案)
評論
0/150
提交評論