版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022屆湖南省長沙廣益中學中考數(shù)學押題試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,則函數(shù)y=ax2+(b-1)x+c的圖象可能是()A. B. C. D.2.據(jù)統(tǒng)計,2015年廣州地鐵日均客運量均為人次,將用科學記數(shù)法表示為()A. B. C. D.3.如圖,已知點A(0,1),B(0,﹣1),以點A為圓心,AB為半徑作圓,交x軸的正半軸于點C,則∠BAC等于()A.90° B.120° C.60° D.30°4.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點F,則的面積為()A.4 B.6 C.8 D.105.如圖,二次函數(shù)y=ax1+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=1,且OA=OC.則下列結(jié)論:①abc>0;②9a+3b+c>0;③c>﹣1;④關(guān)于x的方程ax1+bx+c=0(a≠0)有一個根為﹣;⑤拋物線上有兩點P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,則y1>y1.其中正確的結(jié)論有()A.1個 B.3個 C.4個 D.5個6.如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙O于D,則CD長為()A.7 B. C. D.97.若,,則的值是()A.2 B.﹣2 C.4 D.﹣48.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交于點A,B,C和點D,E,F(xiàn).已知AB=1,BC=3,DE=2,則EF的長為()A.4 B..5 C.6 D.89.對于二次函數(shù),下列說法正確的是()A.當x>0,y隨x的增大而增大B.當x=2時,y有最大值-3C.圖像的頂點坐標為(-2,-7)D.圖像與x軸有兩個交點10.如圖,若數(shù)軸上的點A,B分別與實數(shù)﹣1,1對應(yīng),用圓規(guī)在數(shù)軸上畫點C,則與點C對應(yīng)的實數(shù)是()A.2 B.3 C.4 D.511.在0,﹣2,3,四個數(shù)中,最小的數(shù)是()A.0 B.﹣2 C.3 D.12.某校舉行“漢字聽寫比賽”,5個班級代表隊的正確答題數(shù)如圖.這5個正確答題數(shù)所組成的一組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.10,15 B.13,15 C.13,20 D.15,15二、填空題:(本大題共6個小題,每小題4分,共24分.)13.的相反數(shù)是_____,倒數(shù)是_____,絕對值是_____14.如圖,在△ABC中,AB=AC=10cm,F(xiàn)為AB上一點,AF=2,點E從點A出發(fā),沿AC方向以2cm/s的速度勻速運動,同時點D由點B出發(fā),沿BA方向以lcm/s的速度運動,設(shè)運動時間為t(s)(0<t<5),連D交CF于點G.若CG=2FG,則t的值為_____.15.2017年端午小長假的第一天,永州市共接待旅客約275000人次,請將275000用科學記數(shù)法表示為___________________.16.若m﹣n=4,則2m2﹣4mn+2n2的值為_____.17.如圖,在平面直角坐標系中,點O為原點,菱形OABC的對角線OB在x軸上,頂點A在反比例函數(shù)y=的圖象上,則菱形的面積為_____.18.如圖,在直角坐標系中,點A,B分別在x軸,y軸上,點A的坐標為(﹣1,0),∠ABO=30°,線段PQ的端點P從點O出發(fā),沿△OBA的邊按O→B→A→O運動一周,同時另一端點Q隨之在x軸的非負半軸上運動,如果PQ=,那么當點P運動一周時,點Q運動的總路程為__________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)王老師對試卷講評課中九年級學生參與的深度與廣度進行評價調(diào)查,每位學生最終評價結(jié)果為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項中的一項.評價組隨機抽取了若干名初中學生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:(1)在這次評價中,一共抽查了
名學生;(2)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在扇形的圓心角度數(shù)為
度;(3)請將頻數(shù)分布直方圖補充完整;(4)如果全市九年級學生有8000名,那么在試卷評講課中,“獨立思考”的九年級學生約有多少人?20.(6分)先化簡再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.21.(6分)閱讀下列材料,解答下列問題:材料1.把一個多項式化成幾個整式的積的形式,這種變形叫做因式分解,也叫分解因式.如果把整式的乘法看成一個變形過程,那么多項式的因式分解就是它的逆過程.公式法(平方差公式、完全平方公式)是因式分解的一種基本方法.如對于二次三項式a2+2ab+b2,可以逆用乘法公式將它分解成(a+b)2的形式,我們稱a2+2ab+b2為完全平方式.但是對于一般的二次三項式,就不能直接應(yīng)用完全平方了,我們可以在二次三項式中先加上一項,使其配成完全平方式,再減去這項,使整個式子的值不變,于是有:x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)材料2.因式分解:(x+y)2+2(x+y)+1解:將“x+y”看成一個整體,令x+y=A,則原式=A2+2A+1=(A+1)2再將“A”還原,得:原式=(x+y+1)2.上述解題用到的是“整體思想”,整體思想是數(shù)學解題中常見的一種思想方法,請你解答下列問題:(1)根據(jù)材料1,把c2﹣6c+8分解因式;(2)結(jié)合材料1和材料2完成下面小題:①分解因式:(a﹣b)2+2(a﹣b)+1;②分解因式:(m+n)(m+n﹣4)+3.22.(8分)如圖1所示是一輛直臂高空升降車正在進行外墻裝飾作業(yè).圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點A離地面BD的高度AH為2m.當起重臂AC長度為8m,張角∠HAC為118°時,求操作平臺C離地面的高度.(果保留小數(shù)點后一位,參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)23.(8分)已知拋物線y=ax2+(3b+1)x+b﹣3(a>0),若存在實數(shù)m,使得點P(m,m)在該拋物線上,我們稱點P(m,m)是這個拋物線上的一個“和諧點”.(1)當a=2,b=1時,求該拋物線的“和諧點”;(2)若對于任意實數(shù)b,拋物線上恒有兩個不同的“和諧點”A、B.①求實數(shù)a的取值范圍;②若點A,B關(guān)于直線y=﹣x﹣(+1)對稱,求實數(shù)b的最小值.24.(10分)如圖,在菱形ABCD中,點P在對角線AC上,且PA=PD,⊙O是△PAD的外接圓.(1)求證:AB是⊙O的切線;(2)若AC=8,tan∠BAC=,求⊙O的半徑.25.(10分)如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺的A處測得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測得兩建筑物之間的距離BC是28米,請你幫助小明求出建筑物CD的高度(精確到1米).26.(12分)某校七年級(1)班班主任對本班學生進行了“我最喜歡的課外活動”的調(diào)查,并將調(diào)查結(jié)果分為書法和繪畫類記為A;音樂類記為B;球類記為C;其他類記為D.根據(jù)調(diào)查結(jié)果發(fā)現(xiàn)該班每個學生都進行了等級且只登記了一種自己最喜歡的課外活動.班主任根據(jù)調(diào)查情況把學生都進行了歸類,并制作了如下兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:七年級(1)班學生總?cè)藬?shù)為_______人,扇形統(tǒng)計圖中D類所對應(yīng)扇形的圓心角為_____度,請補全條形統(tǒng)計圖;學校將舉行書法和繪畫比賽,每班需派兩名學生參加,A類4名學生中有兩名學生擅長書法,另兩名擅長繪畫.班主任現(xiàn)從A類4名學生中隨機抽取兩名學生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學生恰好是一名擅長書法,另一名擅長繪畫的概率.27.(12分)某初中學校舉行毛筆書法大賽,對各年級同學的獲獎情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中相關(guān)數(shù)據(jù)解答下列問題:請將條形統(tǒng)計圖補全;獲得一等獎的同學中有來自七年級,有來自八年級,其他同學均來自九年級,現(xiàn)準備從獲得一等獎的同學中任選兩人參加市內(nèi)毛筆書法大賽,請通過列表或畫樹狀圖求所選出的兩人中既有七年級又有九年級同學的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
由一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,得出方程ax2+(b-1)x+c=0有兩個不相等的根,進而得出函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,根據(jù)方程根與系數(shù)的關(guān)系得出函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,即可進行判斷.【詳解】點P在拋物線上,設(shè)點P(x,ax2+bx+c),又因點P在直線y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由圖象可知一次函數(shù)y=x與二次函數(shù)y=ax2+bx+c交于第一象限的P、Q兩點,∴方程ax2+(b-1)x+c=0有兩個正實數(shù)根.∴函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,又∵->0,a>0∴-=-+>0∴函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,∴A符合條件,故選A.2、D【解析】
科學記數(shù)法就是將一個數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).n為整數(shù)位數(shù)減1,即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.【詳解】解:6
590
000=6.59×1.故選:D.【點睛】本題考查學生對科學記數(shù)法的掌握,一定要注意a的形式,以及指數(shù)n的確定方法.3、C【解析】解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC==,∴∠BAC=60°.故選C.點睛:本題考查了垂徑定理的應(yīng)用,關(guān)鍵是求出AC、OA的長.解題時注意:垂直弦的直徑平分這條弦,并且平分弦所對的兩條?。?、C【解析】
根據(jù)折疊易得BD,AB長,利用相似可得BF長,也就求得了CF的長度,△CEF的面積=CF?CE.【詳解】解:由折疊的性質(zhì)知,第二個圖中BD=AB-AD=4,第三個圖中AB=AD-BD=2,
因為BC∥DE,
所以BF:DE=AB:AD,
所以BF=2,CF=BC-BF=4,
所以△CEF的面積=CF?CE=8;
故選:C.點睛:
本題利用了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等;②矩形的性質(zhì),平行線的性質(zhì),三角形的面積公式等知識點.5、D【解析】
根據(jù)拋物線的圖象與系數(shù)的關(guān)系即可求出答案.【詳解】解:由拋物線的開口可知:a<0,由拋物線與y軸的交點可知:c<0,由拋物線的對稱軸可知:>0,∴b>0,∴abc>0,故①正確;令x=3,y>0,∴9a+3b+c>0,故②正確;∵OA=OC<1,∴c>﹣1,故③正確;∵對稱軸為直線x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴當x=﹣c時,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴設(shè)關(guān)于x的方程ax1+bx+c=0(a≠0)有一個根為x,∴x﹣c=4,∴x=c+4=,故④正確;∵x1<1<x1,∴P、Q兩點分布在對稱軸的兩側(cè),∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到對稱軸的距離小于x1到對稱軸的距離,∴y1>y1,故⑤正確.故選D.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax1+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.本題屬于中等題型.6、B【解析】
作DF⊥CA,交CA的延長線于點F,作DG⊥CB于點G,連接DA,DB.由CD平分∠ACB,根據(jù)角平分線的性質(zhì)得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=.【詳解】解:作DF⊥CA,垂足F在CA的延長線上,作DG⊥CB于點G,連接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易證△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:設(shè)AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).∴CD=.故選B.7、D【解析】因為,所以,因為,故選D.8、C【解析】
解:∵AD∥BE∥CF,根據(jù)平行線分線段成比例定理可得,即,解得EF=6,故選C.9、B【解析】
二次函數(shù),所以二次函數(shù)的開口向下,當x<2,y隨x的增大而增大,選項A錯誤;當x=2時,取得最大值,最大值為-3,選項B正確;頂點坐標為(2,-3),選項C錯誤;頂點坐標為(2,-3),拋物線開口向下可得拋物線與x軸沒有交點,選項D錯誤,故答案選B.考點:二次函數(shù)的性質(zhì).10、B【解析】
由數(shù)軸上的點A、B分別與實數(shù)﹣1,1對應(yīng),即可求得AB=2,再根據(jù)半徑相等得到BC=2,由此即求得點C對應(yīng)的實數(shù).【詳解】∵數(shù)軸上的點A,B分別與實數(shù)﹣1,1對應(yīng),∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴與點C對應(yīng)的實數(shù)是:1+2=3.故選B.【點睛】本題考查了實數(shù)與數(shù)軸,熟記實數(shù)與數(shù)軸上的點是一一對應(yīng)的關(guān)系是解決本題的關(guān)鍵.11、B【解析】
根據(jù)實數(shù)比較大小的法則進行比較即可.【詳解】∵在這四個數(shù)中3>0,>0,-2<0,∴-2最小.故選B.【點睛】本題考查的是實數(shù)的大小比較,即正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而?。?2、D【解析】
將五個答題數(shù),從小打到排列,5個數(shù)中間的就是中位數(shù),出現(xiàn)次數(shù)最多的是眾數(shù).【詳解】將這五個答題數(shù)排序為:10,13,15,15,20,由此可得中位數(shù)是15,眾數(shù)是15,故選D.【點睛】本題考查中位數(shù)和眾數(shù)的概念,熟記概念即可快速解答.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、,【解析】∵只有符號不同的兩個數(shù)是互為相反數(shù),∴的相反數(shù)是;∵乘積為1的兩個數(shù)互為倒數(shù),∴的倒數(shù)是;∵負數(shù)得絕對值是它的相反數(shù),∴絕對值是故答案為(1).(2).(3).14、1【解析】
過點C作CH∥AB交DE的延長線于點H,則,證明,可求出CH,再證明,由比例線段可求出t的值.【詳解】如下圖,過點C作CH∥AB交DE的延長線于點H,則,∵DF∥CH,∴,∴,∴,同理,∴,∴,解得t=1,t=(舍去),故答案為:1.【點睛】本題主要考查了三角形中的動點問題,熟練掌握三角形相似的相關(guān)方法是解決本題的關(guān)鍵.15、1.75×2【解析】試題解析:175000=1.75×2.考點:科學計數(shù)法----表示較大的數(shù)16、1【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴當m﹣n=4時,原式=2×42=1.故答案為:1.17、1【解析】
連接AC交OB于D,由菱形的性質(zhì)可知.根據(jù)反比例函數(shù)中k的幾何意義,得出△AOD的面積=1,從而求出菱形OABC的面積=△AOD的面積的4倍.【詳解】連接AC交OB于D.
四邊形OABC是菱形,
.
點A在反比例函數(shù)的圖象上,
的面積,
菱形OABC的面積=的面積=1.【點睛】本題考查的知識點是菱形的性質(zhì)及反比例函數(shù)的比例系數(shù)k的幾何意義.解題關(guān)鍵是反比例函數(shù)圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關(guān)系,即.18、4【解析】
首先根據(jù)題意正確畫出從O→B→A運動一周的圖形,分四種情況進行計算:①點P從O→B時,路程是線段PQ的長;②當點P從B→C時,點Q從O運動到Q,計算OQ的長就是運動的路程;③點P從C→A時,點Q由Q向左運動,路程為QQ′;④點P從A→O時,點Q運動的路程就是點P運動的路程;最后相加即可.【詳解】在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,BO=①當點P從O→B時,如圖1、圖2所示,點Q運動的路程為,②當點P從B→C時,如圖3所示,這時QC⊥AB,則∠ACQ=90°∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴AQ=2AC,又∵CQ=,∴AQ=2∴OQ=2﹣1=1,則點Q運動的路程為QO=1,③當點P從C→A時,如圖3所示,點Q運動的路程為QQ′=2﹣,④當點P從A→O時,點Q運動的路程為AO=1,∴點Q運動的總路程為:+1+2﹣+1=4故答案為4.考點:解直角三角形三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)560;(2)54;(3)詳見解析;(4)獨立思考的學生約有840人.【解析】
(1)由“專注聽講”的學生人數(shù)除以占的百分比求出調(diào)查學生總數(shù)即可;(2)由“主動質(zhì)疑”占的百分比乘以360°即可得到結(jié)果;(3)求出“講解題目”的學生數(shù),補全統(tǒng)計圖即可;(4)求出“獨立思考”學生占的百分比,乘以2800即可得到結(jié)果.【詳解】(1)根據(jù)題意得:224÷40%=560(名),則在這次評價中,一個調(diào)查了560名學生;故答案為:560;(2)根據(jù)題意得:×360°=54°,則在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為54度;故答案為:54;(3)“講解題目”的人數(shù)為560-(84+168+224)=84,補全統(tǒng)計圖如下:(4)根據(jù)題意得:2800×(人),則“獨立思考”的學生約有840人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?0、;【解析】
先根據(jù)分式的混合運算順序和運算法則化簡原式,再由特殊銳角的三角函數(shù)值得出a和b的值,代入計算可得.【詳解】原式=÷(﹣)===,當a=2cos30°+1=2×+1=+1,b=tan45°=1時,原式=.【點睛】本題主要考查分式的化簡求值,在化簡的過程中要注意運算順序和分式的化簡.化簡的最后結(jié)果分子、分母要進行約分,注意運算的結(jié)果要化成最簡分式或整式,也考查了特殊銳角的三角函數(shù)值.21、(1)(c-4)(c-2);(2)①(a-b+1)2;②(m+n-1)(m+n-3).【解析】
(1)根據(jù)材料1,可以對c2-6c+8分解因式;(2)①根據(jù)材料2的整體思想可以對(a-b)2+2(a-b)+1分解因式;②根據(jù)材料1和材料2可以對(m+n)(m+n-4)+3分解因式.【詳解】(1)c2-6c+8=c2-6c+32-32+8=(c-3)2-1=(c-3+1)(c-3+1)=(c-4)(c-2);(2)①(a-b)2+2(a-b)+1設(shè)a-b=t,則原式=t2+2t+1=(t+1)2,則(a-b)2+2(a-b)+1=(a-b+1)2;②(m+n)(m+n-4)+3設(shè)m+n=t,則t(t-4)+3=t2-4t+3=t2-4t+22-22+3=(t-2)2-1=(t-2+1)(t-2-1)=(t-1)(t-3),則(m+n)(m+n-4)+3=(m+n-1)(m+n-3).【點睛】本題考查因式分解的應(yīng)用,解題的關(guān)鍵是明確題意,可以根據(jù)材料中的例子對所求的式子進行因式分解.22、5.8【解析】
過點作于點,過點作于點,易得四邊形為矩形,則,再計算出,在中,利用正弦可計算出CF的長度,然后計算CF+EF即可.【詳解】解:如圖,過點作于點,過點作于點,.又,.∴四邊形為矩形.在中,,..答:操作平臺離地面的高度約為.【點睛】本題考查了解直角三角形的應(yīng)用,先將實際問題抽象為數(shù)學問題,然后利用勾股定理和銳角三角函數(shù)的定義進行計算.23、(1)()或(﹣1,﹣1);(1)①2<a<17②b的最小值是【解析】
(1)把x=y=m,a=1,b=1代入函數(shù)解析式,列出方程,通過解方程求得m的值即可;(1)拋物線上恒有兩個不同的“和諧點”A、B.則關(guān)于m的方程m=am1+(3b+1)m+b-3的根的判別式△=9b1-4ab+11a.①令y=9b1-4ab+11a,對于任意實數(shù)b,均有y>2,所以根據(jù)二次函數(shù)y=9b1-4ab+11的圖象性質(zhì)解答;②利用二次函數(shù)圖象的對稱性質(zhì)解答即可.【詳解】(1)當a=1,b=1時,m=1m1+4m+1﹣4,解得m=或m=﹣1.所以點P的坐標是(,)或(﹣1,﹣1);(1)m=am1+(3b+1)m+b﹣3,△=9b1﹣4ab+11a.①令y=9b1﹣4ab+11a,對于任意實數(shù)b,均有y>2,也就是說拋物線y=9b1﹣4ab+11的圖象都在b軸(橫軸)上方.∴△=(﹣4a)1﹣4×9×11a<2.∴2<a<17.②由“和諧點”定義可設(shè)A(x1,y1),B(x1,y1),則x1,x1是ax1+(3b+1)x+b﹣3=2的兩不等實根,.∴線段AB的中點坐標是:(﹣,﹣).代入對稱軸y=x﹣(+1),得﹣=﹣(+1),∴3b+1=+a.∵a>2,>2,a?=1為定值,∴3b+1=+a≥1=1,∴b≥.∴b的最小值是.【點睛】此題考查了二次函數(shù)綜合題,其中涉及到了二次函數(shù)圖象上點的坐標特征,拋物線與x軸的交點,一元二次方程與二次函數(shù)解析式間的關(guān)系,二次函數(shù)圖象的性質(zhì)等知識點,難度較大,解題時,掌握“和諧點”的定義是解題的難點.24、(1)見解析;(2).【解析】分析:(1)連結(jié)OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根據(jù)垂徑定理的推理得OP⊥AD,AE=DE,則∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根據(jù)菱形的性質(zhì)得∠1=∠2,所以∠2+∠OAP=90°,然后根據(jù)切線的判定定理得到直線AB與⊙O相切;(2)連結(jié)BD,交AC于點F,根據(jù)菱形的性質(zhì)得DB與AC互相垂直平分,則AF=4,tan∠DAC=,得到DF=2,根據(jù)勾股定理得到AD==2,求得AE=,設(shè)⊙O的半徑為R,則OE=R﹣,OA=R,根據(jù)勾股定理列方程即可得到結(jié)論.詳解:(1)連結(jié)OP、OA,OP交AD于E,如圖,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.∵四邊形ABCD為菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直線AB與⊙O相切;(2)連結(jié)BD,交AC于點F,如圖,∵四邊形ABCD為菱形,∴DB與AC互相垂直平分.∵AC=8,tan∠B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度農(nóng)業(yè)科技合作成立公司協(xié)議書4篇
- 2025年定制產(chǎn)品加工承攬合同
- 2024金融機構(gòu)資產(chǎn)管理合同
- 《染色體與基因組學》課件
- 二零二五年度城市綠化苗木養(yǎng)護合作協(xié)議3篇
- 2025年航空器安全檢查與維修服務(wù)合同范本3篇
- 2025年度環(huán)保型化工設(shè)備采購合同(綠色化工)4篇
- 2025年度模具開模與全球供應(yīng)鏈管理合同4篇
- 二零二五年度草原生態(tài)保護草皮種植與修復(fù)合同3篇
- 2025年度市政道路排水系統(tǒng)改造合同4篇
- 2025屆北京巿通州區(qū)英語高三上期末綜合測試試題含解析
- 公婆贈予兒媳婦的房產(chǎn)協(xié)議書(2篇)
- 煤炭行業(yè)智能化煤炭篩分與洗選方案
- 2024年機修鉗工(初級)考試題庫附答案
- Unit 5 同步練習人教版2024七年級英語上冊
- 矽塵對神經(jīng)系統(tǒng)的影響研究
- 分潤模式合同模板
- 海南省汽車租賃合同
- 2024年長春醫(yī)學高等??茖W校單招職業(yè)適應(yīng)性測試題庫必考題
- (正式版)SHT 3046-2024 石油化工立式圓筒形鋼制焊接儲罐設(shè)計規(guī)范
- 2023年山東濟南市初中學業(yè)水平考試地理試卷真題(答案詳解)
評論
0/150
提交評論