版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022屆福建省寧德市福鼎市重點(diǎn)達(dá)標(biāo)名校中考猜題數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,圓O是等邊三角形內(nèi)切圓,則∠BOC的度數(shù)是()A.60° B.100° C.110° D.120°2.如圖,△ABC是⊙O的內(nèi)接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點(diǎn)D,則∠BAD的度數(shù)是()A.45° B.85° C.90° D.95°3.二元一次方程組的解是()A. B. C. D.4.如圖,點(diǎn)A為∠α邊上任意一點(diǎn),作AC⊥BC于點(diǎn)C,CD⊥AB于點(diǎn)D,下列用線段比表示cosα的值,錯(cuò)誤的是(
)A. B. C. D.5.如圖,是由幾個(gè)大小相同的小立方塊所搭幾何體的俯視圖,其中小正方形中的數(shù)字表示在該位置的小立方塊的個(gè)數(shù),則這個(gè)幾何體的主視圖是()A. B. C. D.6.如圖,中,,且,設(shè)直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項(xiàng)中的A. B. C. D.7.不等式5+2x<1的解集在數(shù)軸上表示正確的是().A. B. C. D.8.關(guān)于x的一元二次方程x2﹣2x+k+2=0有實(shí)數(shù)根,則k的取值范圍在數(shù)軸上表示正確的是()A. B.C. D.9.如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6米,C是OA的中點(diǎn),點(diǎn)D在弧AB上,CD∥OB,則圖中休閑區(qū)(陰影部分)的面積是()A.米2 B.米2 C.米2 D.米210.如圖,點(diǎn)O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A在x軸上,△OAB是邊長為4的等邊三角形,以O(shè)為旋轉(zhuǎn)中心,將△OAB按順時(shí)針方向旋轉(zhuǎn)60°,得到△OA′B′,那么點(diǎn)A′的坐標(biāo)為()A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)二、填空題(共7小題,每小題3分,滿分21分)11.用4塊完全相同的長方形拼成正方形(如圖),用不同的方法,計(jì)算圖中陰影部分的面積,可得到1個(gè)關(guān)于的等式為________.12.因式分解:a3b﹣ab3=_____.13.如果兩個(gè)相似三角形對應(yīng)邊上的高的比為1:4,那么這兩個(gè)三角形的周長比是___.14.如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)O,A,B,M均在格點(diǎn)上,P為線段OM上的一個(gè)動(dòng)點(diǎn).(1)OM的長等于_______;(2)當(dāng)點(diǎn)P在線段OM上運(yùn)動(dòng),且使PA2+PB2取得最小值時(shí),請借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點(diǎn)P的位置,并簡要說明你是怎么畫的.15.已知點(diǎn)P是線段AB的黃金分割點(diǎn),PA>PB,AB=4cm,則PA=____cm.16.計(jì)算:____________17.分解因式:=_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對稱軸為=–1,P為拋物線上第二象限的一個(gè)動(dòng)點(diǎn).(1)求拋物線的解析式并寫出其頂點(diǎn)坐標(biāo);(2)當(dāng)點(diǎn)P的縱坐標(biāo)為2時(shí),求點(diǎn)P的橫坐標(biāo);(3)當(dāng)點(diǎn)P在運(yùn)動(dòng)過程中,求四邊形PABC面積最大時(shí)的值及此時(shí)點(diǎn)P的坐標(biāo).19.(5分)如圖,某市郊外景區(qū)內(nèi)一條筆直的公路a經(jīng)過三個(gè)景點(diǎn)A、B、C,景區(qū)管委會又開發(fā)了風(fēng)景優(yōu)美的景點(diǎn)D,經(jīng)測量,景點(diǎn)D位于景點(diǎn)A的北偏東30′方向8km處,位于景點(diǎn)B的正北方向,還位于景點(diǎn)C的北偏西75°方向上,已知AB=5km.景區(qū)管委會準(zhǔn)備由景點(diǎn)D向公路a修建一條距離最短的公路,不考試其他因素,求出這條公路的長.(結(jié)果精確到0.1km).求景點(diǎn)C與景點(diǎn)D之間的距離.(結(jié)果精確到1km).20.(8分)如圖,拋物線y=x1﹣1x﹣3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),直線l與拋物線交于A,C兩點(diǎn),其中點(diǎn)C的橫坐標(biāo)為1.(1)求A,B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;(1)P是線段AC上的一個(gè)動(dòng)點(diǎn)(P與A,C不重合),過P點(diǎn)作y軸的平行線交拋物線于點(diǎn)E,求△ACE面積的最大值;(3)若直線PE為拋物線的對稱軸,拋物線與y軸交于點(diǎn)D,直線AC與y軸交于點(diǎn)Q,點(diǎn)M為直線PE上一動(dòng)點(diǎn),則在x軸上是否存在一點(diǎn)N,使四邊形DMNQ的周長最小?若存在,求出這個(gè)最小值及點(diǎn)M,N的坐標(biāo);若不存在,請說明理由.(4)點(diǎn)H是拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、H四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,請直接寫出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請說明理由.21.(10分)如圖(1),P為△ABC所在平面上一點(diǎn),且∠APB=∠BPC=∠CPA=120°,則點(diǎn)P叫做△ABC的費(fèi)馬點(diǎn).(1)如果點(diǎn)P為銳角△ABC的費(fèi)馬點(diǎn),且∠ABC=60°.①求證:△ABP∽△BCP;②若PA=3,PC=4,則PB=.(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD相交于P點(diǎn).如圖(2)①求∠CPD的度數(shù);②求證:P點(diǎn)為△ABC的費(fèi)馬點(diǎn).22.(10分)如圖,AB、CD是⊙O的直徑,DF、BE是弦,且DF=BE,求證:∠D=∠B.23.(12分)如圖,一條公路的兩側(cè)互相平行,某課外興趣小組在公路一側(cè)AE的點(diǎn)A處測得公路對面的點(diǎn)C與AE的夾角∠CAE=30°,沿著AE方向前進(jìn)15米到點(diǎn)B處測得∠CBE=45°,求公路的寬度.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.73)24.(14分)如圖,在平面直角坐標(biāo)系中,△AOB的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,0),O(0,0),B(2,2).以點(diǎn)O為旋轉(zhuǎn)中心,將△AOB逆時(shí)針旋轉(zhuǎn)90°,得到△A1OB1.畫出△A1OB1;直接寫出點(diǎn)A1和點(diǎn)B1的坐標(biāo);求線段OB1的長度.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】
由三角形內(nèi)切定義可知OB、OC是∠ABC、∠ACB的角平分線,所以可得到關(guān)系式∠OBC+∠OCB=(∠ABC+∠ACB),把對應(yīng)數(shù)值代入即可求得∠BOC的值.【詳解】解:∵△ABC是等邊三角形,∴∠A=∠ABC=∠ACB=60°,∵圓O是等邊三角形內(nèi)切圓,∴OB、OC是∠ABC、∠ACB的角平分線,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故選D.【點(diǎn)睛】此題主要考查了三角形的內(nèi)切圓與內(nèi)心以及切線的性質(zhì).關(guān)鍵是要知道關(guān)系式∠OBC+∠OCB=(∠ABC+∠ACB).2、B【解析】
解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分線BD交⊙O于點(diǎn)D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故選B.【點(diǎn)睛】本題考查圓周角定理;圓心角、弧、弦的關(guān)系.3、B【解析】
利用加減消元法解二元一次方程組即可得出答案【詳解】解:①﹣②得到y(tǒng)=2,把y=2代入①得到x=4,∴,故選:B.【點(diǎn)睛】此題考查了解二元一次方程組,解方程組利用了消元的思想,消元的方法有:代入消元法與加減消元法.4、D【解析】
根據(jù)銳角三角函數(shù)的定義,余弦是鄰邊比斜邊,可得答案.【詳解】cosα=.故選D.【點(diǎn)睛】熟悉掌握銳角三角函數(shù)的定義是關(guān)鍵.5、C【解析】
由俯視圖知該幾何體共2列,其中第1列前一排1個(gè)正方形、后1排2個(gè)正方形,第2列只有前排2個(gè)正方形,據(jù)此可得.【詳解】由俯視圖知該幾何體共2列,其中第1列前一排1個(gè)正方形、后1排2個(gè)正方形,第2列只有前排2個(gè)正方形,所以其主視圖為:故選C.【點(diǎn)睛】考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.6、D【解析】
Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質(zhì)得出∠OCD=∠A,即∠AOD=∠OCD=45°,進(jìn)而證明OD=CD=t;最后根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.【詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數(shù)關(guān)系的圖象應(yīng)為定義域?yàn)閇0,3],開口向上的二次函數(shù)圖象;故選D.【點(diǎn)睛】本題主要考查的是二次函數(shù)解析式的求法及二次函數(shù)的圖象特征,解答本題的關(guān)鍵是根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.7、C【解析】
先解不等式得到x<-1,根據(jù)數(shù)軸表示數(shù)的方法得到解集在-1的左邊.【詳解】5+1x<1,移項(xiàng)得1x<-4,系數(shù)化為1得x<-1.故選C.【點(diǎn)睛】本題考查了在數(shù)軸上表示不等式的解集:先求出不等式組的解集,然后根據(jù)數(shù)軸表示數(shù)的方法把對應(yīng)的未知數(shù)的取值范圍通過畫區(qū)間的方法表示出來,等號時(shí)用實(shí)心,不等時(shí)用空心.8、C【解析】
由一元二次方程有實(shí)數(shù)根可知△≥0,即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍.【詳解】∵關(guān)于x的一元二次方程x2?2x+k+2=0有實(shí)數(shù)根,∴△=(?2)2?4(k+2)?0,解得:k??1,在數(shù)軸上表示為:故選C.【點(diǎn)睛】本題考查了一元二次方程根的判別式.根據(jù)一元二次方程根的情況利用根的判別式列出不等式是解題的關(guān)鍵.9、C【解析】
連接OD,∵弧AB的半徑OA長是6米,C是OA的中點(diǎn),∴OC=OA=×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴.又∵,∴∠DOC=60°.∴(米2).故選C.10、D【解析】分析:作BC⊥x軸于C,如圖,根據(jù)等邊三角形的性質(zhì)得則易得A點(diǎn)坐標(biāo)和O點(diǎn)坐標(biāo),再利用勾股定理計(jì)算出然后根據(jù)第二象限點(diǎn)的坐標(biāo)特征可寫出B點(diǎn)坐標(biāo);由旋轉(zhuǎn)的性質(zhì)得則點(diǎn)A′與點(diǎn)B重合,于是可得點(diǎn)A′的坐標(biāo).詳解:作BC⊥x軸于C,如圖,∵△OAB是邊長為4的等邊三角形∴∴A點(diǎn)坐標(biāo)為(?4,0),O點(diǎn)坐標(biāo)為(0,0),在Rt△BOC中,∴B點(diǎn)坐標(biāo)為∵△OAB按順時(shí)針方向旋轉(zhuǎn),得到△OA′B′,∴∴點(diǎn)A′與點(diǎn)B重合,即點(diǎn)A′的坐標(biāo)為故選D.點(diǎn)睛:考查圖形的旋轉(zhuǎn),等邊三角形的性質(zhì).求解時(shí),注意等邊三角形三線合一的性質(zhì).二、填空題(共7小題,每小題3分,滿分21分)11、(a+b)2﹣(a﹣b)2=4ab【解析】
根據(jù)長方形面積公式列①式,根據(jù)面積差列②式,得出結(jié)論.【詳解】S陰影=4S長方形=4ab①,S陰影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案為(a+b)2﹣(a﹣b)2=4ab.【點(diǎn)睛】本題考查了完全平方公式幾何意義的理解,此題有機(jī)地把代數(shù)與幾何圖形聯(lián)系在一起,利用幾何圖形的面積公式直接得出或由其圖形的和或差得出.12、ab(a+b)(a﹣b)【解析】
先提取公因式ab,然后再利用平方差公式分解即可.【詳解】a3b﹣ab3=ab(a2﹣b2)=ab(a+b)(a﹣b),故答案為ab(a+b)(a﹣b).【點(diǎn)睛】本題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解本題的關(guān)鍵.分解因式的步驟一般為:一提(公因式),二套(公式),三徹底.13、1:4【解析】∵兩個(gè)相似三角形對應(yīng)邊上的高的比為1∶4,∴這兩個(gè)相似三角形的相似比是1:4∵相似三角形的周長比等于相似比,∴它們的周長比1:4,故答案為:1:4.【點(diǎn)睛】本題考查了相似三角形的性質(zhì),相似三角形對應(yīng)邊上的高、相似三角形的周長比都等于相似比.14、(1)4;(2)見解析;【解析】
解:(1)由勾股定理可得OM的長度(2)取格點(diǎn)F,E,連接EF,得到點(diǎn)N,取格點(diǎn)S,T,連接ST,得到點(diǎn)R,連接NR交OM于P,則點(diǎn)P即為所求。【詳解】(1)OM==4;故答案為4.(2)以點(diǎn)O為原點(diǎn)建立直角坐標(biāo)系,則A(1,0),B(4,0),設(shè)P(a,a),(0≤a≤4),∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,∴PA2+PB2=4(a﹣)2+,∵0≤a≤4,∴當(dāng)a=時(shí),PA2+PB2取得最小值,綜上,需作出點(diǎn)P滿足線段OP的長=;取格點(diǎn)F,E,連接EF,得到點(diǎn)N,取格點(diǎn)S,T,連接ST,得到點(diǎn)R,連接NR交OM于P,則點(diǎn)P即為所求.【點(diǎn)睛】(1)根據(jù)勾股定理即可得到結(jié)論;(2)取格點(diǎn)F,E,連接EF,得到點(diǎn)N,取格點(diǎn)S,T,連接ST,得到點(diǎn)R,連接NR即可得到結(jié)果.15、2-2【解析】
根據(jù)黃金分割點(diǎn)的定義,知AP是較長線段;則AP=AB,代入運(yùn)算即可.【詳解】解:由于P為線段AB=4的黃金分割點(diǎn),且AP是較長線段;則AP=4×=cm,故答案為:(2-2)cm.【點(diǎn)睛】此題考查了黃金分割的定義,應(yīng)該識記黃金分割的公式:較短的線段=原線段的,難度一般.16、y【解析】
根據(jù)冪的乘方和同底數(shù)冪相除的法則即可解答.【詳解】【點(diǎn)睛】本題考查了冪的乘方和同底數(shù)冪相除,熟練掌握:冪的乘方,底數(shù)不變,指數(shù)相乘的法則及同底數(shù)冪相除,底數(shù)不變,指數(shù)相減是關(guān)鍵.17、.【解析】
將一個(gè)多項(xiàng)式分解因式的一般步驟是首先看各項(xiàng)有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.【詳解】直接提取公因式即可:.三、解答題(共7小題,滿分69分)18、(1)二次函數(shù)的解析式為,頂點(diǎn)坐標(biāo)為(–1,4);(2)點(diǎn)P橫坐標(biāo)為––1;(3)當(dāng)時(shí),四邊形PABC的面積有最大值,點(diǎn)P().【解析】試題分析:(1)已知拋物線與軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對稱軸為=﹣1,由此列出方程組,解方程組求得a、b、c的值,即可得拋物線的解析式,把解析式化為頂點(diǎn)式,直接寫出頂點(diǎn)坐標(biāo)即可;(2)把y=2代入解析式,解方程求得x的值,即可得點(diǎn)P的橫坐標(biāo),從而求得點(diǎn)P的坐標(biāo);(3)設(shè)點(diǎn)P(,),則,根據(jù)得出四邊形PABC與x之間的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求得x的值,即可求得點(diǎn)P的坐標(biāo).試題解析:(1)∵拋物線與軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對稱軸為=﹣1,∴,解得:,∴二次函數(shù)的解析式為=,∴頂點(diǎn)坐標(biāo)為(﹣1,4)(2)設(shè)點(diǎn)P(,2),即=2,解得=﹣1(舍去)或=﹣﹣1,∴點(diǎn)P(﹣﹣1,2).(3)設(shè)點(diǎn)P(,),則,,∴=∴當(dāng)時(shí),四邊形PABC的面積有最大值.所以點(diǎn)P().點(diǎn)睛:本題是二次函數(shù)綜合題,主要考查學(xué)生對二次函數(shù)解決動(dòng)點(diǎn)問題綜合運(yùn)用能力,動(dòng)點(diǎn)問題為中考??碱}型,注意培養(yǎng)數(shù)形結(jié)合思想,培養(yǎng)綜合分析歸納能力,解決這類問題要會建立二次函數(shù)模型,利用二次函數(shù)的性質(zhì)解決問題.19、(1)景點(diǎn)D向公路a修建的這條公路的長約是3.1km;(2)景點(diǎn)C與景點(diǎn)D之間的距離約為4km.【解析】
解:(1)如圖,過點(diǎn)D作DE⊥AC于點(diǎn)E,過點(diǎn)A作AF⊥DB,交DB的延長線于點(diǎn)F,在Rt△DAF中,∠ADF=30°,∴AF=AD=×8=4,∴DF=,在Rt△ABF中BF==3,∴BD=DF﹣BF=4﹣3,sin∠ABF=,在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,∴DE=BD?sin∠DBE=×(4﹣3)=≈3.1(km),∴景點(diǎn)D向公路a修建的這條公路的長約是3.1km;(2)由題意可知∠CDB=75°,由(1)可知sin∠DBE==0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),∴景點(diǎn)C與景點(diǎn)D之間的距離約為4km.20、(1)y=﹣x﹣1;(1)△ACE的面積最大值為;(3)M(1,﹣1),N(,0);(4)滿足條件的F點(diǎn)坐標(biāo)為F1(1,0),F(xiàn)1(﹣3,0),F(xiàn)3(4+,0),F(xiàn)4(4﹣,0).【解析】
(1)令拋物線y=x1-1x-3=0,求出x的值,即可求A,B兩點(diǎn)的坐標(biāo),根據(jù)兩點(diǎn)式求出直線AC的函數(shù)表達(dá)式;
(1)設(shè)P點(diǎn)的橫坐標(biāo)為x(-1≤x≤1),求出P、E的坐標(biāo),用x表示出線段PE的長,求出PE的最大值,進(jìn)而求出△ACE的面積最大值;
(3)根據(jù)D點(diǎn)關(guān)于PE的對稱點(diǎn)為點(diǎn)C(1,-3),點(diǎn)Q(0,-1)點(diǎn)關(guān)于x軸的對稱點(diǎn)為M(0,1),則四邊形DMNQ的周長最小,求出直線CM的解析式為y=-1x+1,進(jìn)而求出最小值和點(diǎn)M,N的坐標(biāo);
(4)結(jié)合圖形,分兩類進(jìn)行討論,①CF平行x軸,如圖1,此時(shí)可以求出F點(diǎn)兩個(gè)坐標(biāo);②CF不平行x軸,如題中的圖1,此時(shí)可以求出F點(diǎn)的兩個(gè)坐標(biāo).【詳解】解:(1)令y=0,解得或x1=3,∴A(﹣1,0),B(3,0);將C點(diǎn)的橫坐標(biāo)x=1代入y=x1﹣1x﹣3得∴C(1,-3),∴直線AC的函數(shù)解析式是(1)設(shè)P點(diǎn)的橫坐標(biāo)為x(﹣1≤x≤1),則P、E的坐標(biāo)分別為:P(x,﹣x﹣1),E(x,x1﹣1x﹣3),∵P點(diǎn)在E點(diǎn)的上方,∴當(dāng)時(shí),PE的最大值△ACE的面積最大值(3)D點(diǎn)關(guān)于PE的對稱點(diǎn)為點(diǎn)C(1,﹣3),點(diǎn)Q(0,﹣1)點(diǎn)關(guān)于x軸的對稱點(diǎn)為K(0,1),連接CK交直線PE于M點(diǎn),交x軸于N點(diǎn),可求直線CK的解析式為,此時(shí)四邊形DMNQ的周長最小,最小值求得M(1,﹣1),(4)存在如圖1,若AF∥CH,此時(shí)的D和H點(diǎn)重合,CD=1,則AF=1,于是可得F1(1,0),F(xiàn)1(﹣3,0),如圖1,根據(jù)點(diǎn)A和F的坐標(biāo)中點(diǎn)和點(diǎn)C和點(diǎn)H的坐標(biāo)中點(diǎn)相同,再根據(jù)|HA|=|CF|,求出綜上所述,滿足條件的F點(diǎn)坐標(biāo)為F1(1,0),F(xiàn)1(﹣3,0),,.【點(diǎn)睛】屬于二次函數(shù)綜合題,考查二次函數(shù)與軸的交點(diǎn)坐標(biāo),待定系數(shù)法求一次函數(shù)解析式,二次函數(shù)的最值以及平行四邊形的性質(zhì)等,綜合性比較強(qiáng),難度較大.21、(1)①證明見解析;②23【解析】試題分析:(1)①根據(jù)題意,利用內(nèi)角和定理及等式性質(zhì)得到一對角相等,利用兩角相等的三角形相似即可得證;②由三角形ABP與三角形BCP相似,得比例,將PA與PC的長代入求出PB的長即可;(2)①根據(jù)三角形ABE與三角形ACD為等邊三角形,利用等邊三角形的性質(zhì)得到兩對邊相等,兩個(gè)角為60°,利用等式的性質(zhì)得到夾角相等,利用SAS得到三角形ACE與三角形ABD全等,利用全等三角形的對應(yīng)角相等得到∠1=∠2,再由對頂角相等,得到∠5=∠6,即可求出所求角度數(shù);②由三角形ADF與三角形CPF相似,得到比例式,變形得到積的恒等式,再由對頂角相等,利用兩邊成比例,且夾角相等的三角形相似得到三角形AFP與三角形CFD相似,利用相似三角形對應(yīng)角相等得到∠APF為60°,由∠APD+∠DPC,求出∠APC為120°,進(jìn)而確定出∠APB與∠BPC都為120°,即可得證.試題解析:(1)證明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴PAPB∴PB2=PA?PC=12,∴PB=23;(2)解:①∵△ABE與△ACD都為等邊三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年高中歷史第二單元凡爾賽-華盛頓體系下的短暫和平第7課華盛頓體系的建立教學(xué)教案岳麓版選修3
- 玉溪師范學(xué)院《行政法學(xué)》2021-2022學(xué)年期末試卷
- 2024工藝品加盟合同書范本
- 2024年手持云臺合作協(xié)議書
- 鹽城師范學(xué)院《照明設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷
- 鹽城師范學(xué)院《通信原理》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024瓷磚購銷合同
- 2024年油氣儲層保護(hù)劑項(xiàng)目合作計(jì)劃書
- 2024年提供住宿社會救助服務(wù)合作協(xié)議書
- 滬教版三年級下冊數(shù)學(xué)第二單元 用兩位數(shù)乘除 測試卷附參考答案ab卷
- 新生兒液體療法PPT課件.ppt
- 隧道工程超前地質(zhì)預(yù)報(bào)管理辦法
- 2022年可吸收骨釘(1)
- 精裝修工程投標(biāo)書
- 廠房壓縮空氣管道安裝工程施工方案完整
- 檔案工作目標(biāo)管理考評標(biāo)準(zhǔn)及評分記錄表
- 2017年中成藥醫(yī)保目錄
- 城市商業(yè)綜合體地產(chǎn)項(xiàng)目造價(jià)估算指標(biāo)
- 《保障農(nóng)民工工資支付條例》宣傳口袋書
- 施工現(xiàn)場危險(xiǎn)源辨識、風(fēng)險(xiǎn)評價(jià)和風(fēng)險(xiǎn)控制
- 小學(xué)食堂滿意度問卷調(diào)查表
評論
0/150
提交評論