版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第03講直線、平面平行垂直的判定與性質(zhì)(練)一、單選題1.己知m,n是兩條不重合的直線,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是三個(gè)不重合的平面,下列命題中正確的是(
)A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0【答案】D【分析】根據(jù)空間中位置關(guān)系的性質(zhì)定理和判定定理可判斷各選項(xiàng)的正誤.【詳解】對(duì)于A,若SKIPIF1<0,則SKIPIF1<0或異面,故A錯(cuò)誤.對(duì)于B,若SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0相交,故B錯(cuò)誤.對(duì)于C,若SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0相交,故C錯(cuò)誤.對(duì)于D,由線面垂直的性質(zhì)可得若SKIPIF1<0,則SKIPIF1<0,故D正確,故選:D.2.已知空間中SKIPIF1<0,SKIPIF1<0是兩條不同的直線,SKIPIF1<0,SKIPIF1<0是兩個(gè)不同的平面,則下列命題正確的是(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0異面 D.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0【答案】B【分析】根據(jù)空間中的線和平面,以及平面與平面的位置關(guān)系即可逐一判斷.【詳解】由SKIPIF1<0,SKIPIF1<0可得SKIPIF1<0或者SKIPIF1<0,故A錯(cuò)誤,由垂直于同一平面的兩直線平行,可知B正確,由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0可得SKIPIF1<0與SKIPIF1<0異面或者SKIPIF1<0,故C錯(cuò)誤,由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),不能得到SKIPIF1<0,只有當(dāng)SKIPIF1<0時(shí),才可以得到SKIPIF1<0,故D錯(cuò)誤,故選:B3.已知兩條不同的直線SKIPIF1<0及兩個(gè)不同的平面SKIPIF1<0,下列說法正確的是(
)A.若SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0是異面直線C.若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0平行或異面D.若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0一定相交【答案】C【分析】由面面平行的性質(zhì)可判斷ABC,由線面平行的判定定理可判斷D【詳解】若SKIPIF1<0,則直線SKIPIF1<0沒有交點(diǎn),故SKIPIF1<0與SKIPIF1<0平行或異面,故A,B錯(cuò)誤,C正確;若SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0平行,故D錯(cuò)誤故選:C4.設(shè)SKIPIF1<0為兩條直線,SKIPIF1<0為兩個(gè)平面,下列四個(gè)命題中正確的是(
)A.若SKIPIF1<0與SKIPIF1<0所稱的角相等,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0【答案】B【分析】根據(jù)平行和垂直的性質(zhì)定理,并進(jìn)行判斷.【詳解】對(duì)于選項(xiàng)A,將一個(gè)圓錐放到平面上,則它的每條母線與平面所成的角都是相等的,故“若SKIPIF1<0與SKIPIF1<0所稱的角相等,則SKIPIF1<0”故A錯(cuò);對(duì)于選項(xiàng)C,若SKIPIF1<0,則SKIPIF1<0位置關(guān)系可能是平行,相交或異面,故C錯(cuò);對(duì)于選項(xiàng)D,若SKIPIF1<0,則SKIPIF1<0是錯(cuò)誤的,兩平面SKIPIF1<0還可能是相交平面;故D錯(cuò);對(duì)于選項(xiàng)B,若SKIPIF1<0,則SKIPIF1<0,兩個(gè)平面垂直時(shí),與它們垂直的兩個(gè)方向一定是垂直的.故選:B.5.三棱柱SKIPIF1<0中,SKIPIF1<0面SKIPIF1<0,SKIPIF1<0則下列兩條直線中,不互相垂直的是(
)A.SKIPIF1<0和SKIPIF1<0 B.SKIPIF1<0和SKIPIF1<0 C.SKIPIF1<0和SKIPIF1<0 D.SKIPIF1<0和SKIPIF1<0【答案】B【分析】根據(jù)線面垂直的性質(zhì)以及判定即可得到線線垂直,由選項(xiàng)即可逐一求解.【詳解】對(duì)于A,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0;對(duì)于B,SKIPIF1<0與SKIPIF1<0不一定垂直;對(duì)于C,因?yàn)镾KIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0;對(duì)于D,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0C.故選:B.6(理科).如圖,在正四棱柱SKIPIF1<0中,SKIPIF1<0是棱SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,且SKIPIF1<0.若過點(diǎn)SKIPIF1<0的平面與直線SKIPIF1<0交于點(diǎn)SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】建立空間直角坐標(biāo)系,表示出點(diǎn)的坐標(biāo),設(shè)SKIPIF1<0,由面面平行的性質(zhì)得到SKIPIF1<0平面SKIPIF1<0,再由線面平行的性質(zhì)得到SKIPIF1<0,根據(jù)向量共線的坐標(biāo)表示計(jì)算可得.【詳解】解:以SKIPIF1<0為坐標(biāo)原點(diǎn),以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的方向分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0軸,建立如圖所示的空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0.因?yàn)槠矫鍿KIPIF1<0SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,因?yàn)槠矫鍿KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0.故選:A二、填空題7.空間四邊形SKIPIF1<0中,SKIPIF1<0,則異面直線SKIPIF1<0與SKIPIF1<0所成的角的大小為___________.【答案】SKIPIF1<0【分析】取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,由SKIPIF1<0證SKIPIF1<0平面SKIPIF1<0,再證SKIPIF1<0即可得所求角度.【詳解】空間四邊形SKIPIF1<0中,取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0所成的角為SKIPIF1<0.故答案為:SKIPIF1<08.正棱錐的高為2,側(cè)棱與底面所成角為SKIPIF1<0,則該正棱錐的側(cè)棱長為______.【答案】SKIPIF1<0【分析】先求出SKIPIF1<0,再根據(jù)勾股定理求出SKIPIF1<0即可.【詳解】如圖所示,SKIPIF1<0是一個(gè)正四棱錐,SKIPIF1<0,且有SKIPIF1<0,側(cè)棱SKIPIF1<0與底面所成角為SKIPIF1<0,所以SKIPIF1<0,所以側(cè)棱SKIPIF1<0,故答案為:SKIPIF1<09.如圖,SKIPIF1<0是SKIPIF1<0的二面角SKIPIF1<0棱SKIPIF1<0上的兩點(diǎn),線段SKIPIF1<0、SKIPIF1<0分別在平面SKIPIF1<0內(nèi),且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則線段SKIPIF1<0的長為______.【答案】4【分析】作輔助線使SKIPIF1<0為二面角的平面角,由余弦定理求出SKIPIF1<0,再通過證明SKIPIF1<0平面EAC,得出SKIPIF1<0,通過勾股定理即可求解.【詳解】如圖所示:在平面SKIPIF1<0中,過A作直線平行于BD,在其上取一點(diǎn)E,使AE=BD,連接EC、ED.由SKIPIF1<0,則SKIPIF1<0即為SKIPIF1<0的平面角,則SKIPIF1<0.在SKIPIF1<0中,由余弦定理得:SKIPIF1<0SKIPIF1<0,四邊形EABD是平行四邊形,則ED=AB=3.由SKIPIF1<0平面EAC,結(jié)合SKIPIF1<0得SKIPIF1<0平面EAC,SKIPIF1<0平面EAC,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0是直角三角形.由勾股定理SKIPIF1<0.故答案為:410.a(chǎn),b,c是空間中互不重合的三條直線,下面給出五個(gè)命題:①若aSKIPIF1<0b,bSKIPIF1<0c,則aSKIPIF1<0c;②若aSKIPIF1<0b,bSKIPIF1<0c,則aSKIPIF1<0c;③若a與b相交,b與c相交,則a與c相交;④若aSKIPIF1<0平面SKIPIF1<0,bSKIPIF1<0平面SKIPIF1<0,則a,b一定是異面直線;上述命題中正確的是_______(只填序號(hào)).【答案】①【分析】對(duì)于①,用平行的傳遞性即可判斷;對(duì)于②,利用直線垂直的性質(zhì)即可判斷;對(duì)于③,利用直線的位置關(guān)系判斷;對(duì)于④,利用異面直線的定義判斷【詳解】解:①根據(jù)空間直線平行的平行公理可知,若aSKIPIF1<0b,bSKIPIF1<0c,則aSKIPIF1<0c,所以①正確;②在空間中,若aSKIPIF1<0b,bSKIPIF1<0c時(shí),SKIPIF1<0與SKIPIF1<0可以相交、平行,也可以異面,所以②錯(cuò)誤;③在空間中,若a與b相交,b與c相交,SKIPIF1<0與SKIPIF1<0可以相交、平行,也可以異面,所以③錯(cuò)誤;④若aSKIPIF1<0平面SKIPIF1<0,bSKIPIF1<0平面SKIPIF1<0,并不能說明SKIPIF1<0與SKIPIF1<0不在同一個(gè)平面內(nèi),SKIPIF1<0與SKIPIF1<0可以平行、相交,也可能是異面直線,所以④錯(cuò)誤,故答案為:①.三、解答題11(理科).如圖,在正三棱柱SKIPIF1<0中,底面邊長為2,SKIPIF1<0,D為SKIPIF1<0的中點(diǎn),點(diǎn)E在棱SKIPIF1<0上,且SKIPIF1<0,點(diǎn)P為線段SKIPIF1<0上的動(dòng)點(diǎn).(1)求證:SKIPIF1<0;(2)若直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為SKIPIF1<0,求平面SKIPIF1<0和平面SKIPIF1<0的夾角的余弦值.【解析】(1)在矩形SKIPIF1<0中,SKIPIF1<0,D為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0是正三角形,D為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,又因?yàn)镾KIPIF1<0是正三棱柱,所以SKIPIF1<0平面SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,點(diǎn)P為線段SKIPIF1<0上,所以SKIPIF1<0平面SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0;(2)如圖以SKIPIF1<0的中點(diǎn)為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系SKIPIF1<0,如圖,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0為平面SKIPIF1<0的法向量,則SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,取SKIPIF1<0為平面SKIPIF1<0的法向量,所以SKIPIF1<0,所以平面SKIPIF1<0與平面SKIPIF1<0的夾角的余弦值為SKIPIF1<0.12.四棱錐SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0,四邊形SKIPIF1<0為菱形,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn).(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)求SKIPIF1<0與平面SKIPIF1<0所成的角的正切值;【解析】(1)∵四邊形ABCD為菱形,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0為等邊三角形,∴SKIPIF1<0,在SKIPIF1<0中,E是AD中點(diǎn),∴SKIPIF1<0,∵SKIPIF1<0平面ABCD,SKIPIF1<0平面ABCD,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0平面PAD,SKIPIF1<0平面PAD,∴SKIPIF1<0平面PAD,∵SKIPIF1<0平面PCE,∴平面SKIPIF1<0平面PAD.(2)∵SKIPIF1<0平面PAD,∴斜線PC在平面內(nèi)的射影為PE,即SKIPIF1<0是PC與平面PAD所成角的平面角,∵SKIPIF1<0平面ABCD,SKIPIF1<0平面ABCD,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∵SKIPIF1<0平面PAD,SKIPIF1<0平面PAD,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴PC與平面PAD所成角的正切值為SKIPIF1<0.一、單選題1.已知矩形ABCD中,SKIPIF1<0,將SKIPIF1<0沿BD折起至SKIPIF1<0,當(dāng)SKIPIF1<0與AD所成角最大時(shí),三棱錐SKIPIF1<0的體積等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先判斷當(dāng)SKIPIF1<0與SKIPIF1<0所成角最大時(shí),SKIPIF1<0,進(jìn)而證得SKIPIF1<0面SKIPIF1<0,再證得SKIPIF1<0是直角三角形,故可由SKIPIF1<0求得結(jié)果.【詳解】因?yàn)楫惷嬷本€最大角為直角,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0所成角最大,因?yàn)樗倪呅蜸KIPIF1<0是矩形,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,故SKIPIF1<0面SKIPIF1<0,又因?yàn)镾KIPIF1<0面SKIPIF1<0,所以SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0.故選:C.2.設(shè)α是空間中的一個(gè)平面,l,m,n是三條不同的直線,則(
)A.若m?α,n?α,l⊥m,l⊥n,則l⊥αB.若lSKIPIF1<0m,mSKIPIF1<0n,l⊥α,則n⊥αC.若lSKIPIF1<0m,m⊥α,n⊥α,則l⊥nD.若m?α,n⊥α,l⊥n,則lSKIPIF1<0m【答案】B【分析】根據(jù)線面垂直的判定定理可判斷A;根據(jù)線面垂直的性質(zhì)結(jié)論可判斷B,C;根據(jù)線面垂直的性質(zhì)結(jié)合空間直線的位置關(guān)系可判斷D.【詳解】由α是空間中的一個(gè)平面,l,m,n是三條不同的直線,知:在A中,若m?α,n?α,l⊥m,l⊥n,由于m,n不一定相交,則l與α相交、平行或l?α,即l不一定垂直于α,故A錯(cuò)誤;在B中,若lSKIPIF1<0m,mSKIPIF1<0n,則lSKIPIF1<0n,又因?yàn)閘⊥α,故n⊥α,故B正確;在C中,若lSKIPIF1<0m,m⊥α,n⊥α,則lSKIPIF1<0n,故C錯(cuò)誤;在D中,若m?α,n⊥α,l⊥n,則l與m相交、平行或異面,故D錯(cuò)誤.故選:B.3.已知正方體SKIPIF1<0的邊長為2,點(diǎn)E,F(xiàn)分別為棱CD,SKIPIF1<0的中點(diǎn),點(diǎn)P為四邊形SKIPIF1<0內(nèi)(包括邊界)的一動(dòng)點(diǎn),且滿足SKIPIF1<0平面BEF,則點(diǎn)P的軌跡長為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.1【答案】A【分析】通過作圖,利用面面平行找到點(diǎn)P的軌跡,從而求得其長度,即得答案.【詳解】畫出示意圖如下:取SKIPIF1<0中點(diǎn)N,取SKIPIF1<0中點(diǎn)M,連接SKIPIF1<0,則SKIPIF1<0,則四邊形SKIPIF1<0為平行四邊形,所以SKIPIF1<0BE,連接SKIPIF1<0,則SKIPIF1<0,故MNSKIPIF1<0EF,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0SKIPIF1<0平面BEF,所以平面BEFSKIPIF1<0平面B1MN,平面SKIPIF1<0∩平面SKIPIF1<0=MN,所以P點(diǎn)軌跡即為MN,長度為SKIPIF1<0;證明:因?yàn)槠矫鍮EFSKIPIF1<0平面SKIPIF1<0,P點(diǎn)是MN上的動(dòng)點(diǎn),故SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面BEF,滿足題意.故選:A.4.如圖,在正方體ABCD﹣A1B1C1D1中,AB=2,P為CC1的中點(diǎn),點(diǎn)Q在四邊形DCC1D1內(nèi)(包括邊界)運(yùn)動(dòng),若AQ∥平面A1BP,則AQ的最小值為(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由線面平行與面面平行的判定定理求解即可【詳解】取C1D1,D1D,CD,F(xiàn)G中點(diǎn)分別為E、F、G,H,連接EP,AF,F(xiàn)G,AG,AH,如圖所示:∵P為CC1的中點(diǎn),則平面A1BP即為平面A1BPE,EP∥DB,F(xiàn)G∥DB,A1E∥AG,EP∥FG,∵FG?平面A1BPE,AG?平面A1BPE,∴FG∥平面A1BPE,AG∥平面A1BPE,又FG∩AG=G,F(xiàn)G?平面AFG,AG?平面AFG,∴AFG∥平面A1BP,∴當(dāng)Q運(yùn)動(dòng)到FG中點(diǎn)H時(shí),此時(shí)AH?平面AFG,AH∥平面A1BP,AQ的最小值為AH,∵AB=2,∴AF=AGSKIPIF1<0,F(xiàn)GSKIPIF1<0,在Rt△AFH中,AHSKIPIF1<0,故AQ的最小值為SKIPIF1<0,故選:B.5.在棱長為1的正方體ABCD﹣A1B1C1D1中,點(diǎn)M,N分別是棱BC,CC1的中點(diǎn),動(dòng)點(diǎn)P在正方形BCC1B1(包括邊界)內(nèi)運(yùn)動(dòng).若SKIPIF1<0平面AMN,則PA1的最小值是(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0平面SKIPIF1<0,可以找到SKIPIF1<0點(diǎn)在右側(cè)面的運(yùn)動(dòng)軌跡,從而求出SKIPIF1<0的最小值【詳解】如圖所示,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,因?yàn)镾KIPIF1<0分別是棱SKIPIF1<0的中點(diǎn),所以SKIPIF1<0SKIPIF1<0,SKIPIF1<0,又因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0點(diǎn)在右側(cè)面,所以SKIPIF1<0點(diǎn)的軌跡是SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0點(diǎn)位于SKIPIF1<0中點(diǎn)SKIPIF1<0處時(shí),SKIPIF1<0最小,此時(shí),SKIPIF1<0.故選:C6.在正方體SKIPIF1<0中,則下列判斷錯(cuò)誤的是(
)A.SKIPIF1<0平面SKIPIF1<0 B.平面SKIPIF1<0∥平面SKIPIF1<0C.直線SKIPIF1<0過SKIPIF1<0的垂心 D.平面SKIPIF1<0與平面SKIPIF1<0夾角為SKIPIF1<0【答案】D【分析】由題意可得SKIPIF1<0,SKIPIF1<0,進(jìn)而得SKIPIF1<0平面SKIPIF1<0,從而判斷A正確;由SKIPIF1<0∥SKIPIF1<0SKIPIF1<0∥SKIPIF1<0,進(jìn)而得平面SKIPIF1<0∥平面SKIPIF1<0,從而判斷B;由三棱錐SKIPIF1<0為正三棱錐,可得直線SKIPIF1<0過SKIPIF1<0的垂心,從而判斷C;連接SKIPIF1<0交SKIPIF1<0于O點(diǎn),連接SKIPIF1<0,則可得SKIPIF1<0為平面SKIPIF1<0與平面SKIPIF1<0的夾角,在SKIPIF1<0中計(jì)算SKIPIF1<0的值,從而判斷D.【詳解】解:由SKIPIF1<0,得SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,同理可得SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,故A正確;由SKIPIF1<0∥SKIPIF1<0SKIPIF1<0∥SKIPIF1<0,得平面SKIPIF1<0∥平面SKIPIF1<0,故B正確;因?yàn)槿忮FSKIPIF1<0為正三棱錐(或由SKIPIF1<0兩兩垂直)得直線SKIPIF1<0過SKIPIF1<0的垂心,故C正確;連接SKIPIF1<0交SKIPIF1<0于O點(diǎn),連接SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0為平面SKIPIF1<0與平面SKIPIF1<0的夾角,因?yàn)镾KIPIF1<0,故D錯(cuò)誤.故選:D.二、填空題7.在三棱柱SKIPIF1<0中,SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與平面SKIPIF1<0所成的角為45°.當(dāng)三棱柱SKIPIF1<0的體積最小時(shí),三棱柱SKIPIF1<0外接球的表面積為______.【答案】SKIPIF1<0【分析】過點(diǎn)B作SKIPIF1<0、SKIPIF1<0,利用線面垂直、面面垂直的判定定理、性質(zhì)定理證明面面垂直和線面垂直,得到SKIPIF1<0是SKIPIF1<0(SKIPIF1<0)與平面SKIPIF1<0所成的角,再利用底面三角形的面積和基本不等式得到SKIPIF1<0,進(jìn)一步確定三棱柱體積的最值和外接球球心位置和半徑.【詳解】過點(diǎn)B作SKIPIF1<0,垂足為D,連接SKIPIF1<0.由SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,得SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0.過點(diǎn)B作SKIPIF1<0,垂足為H,SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0是SKIPIF1<0在面SKIPIF1<0上的射影,故SKIPIF1<0,即SKIPIF1<0是SKIPIF1<0(SKIPIF1<0)與平面SKIPIF1<0所成的角,且SKIPIF1<0,則SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以當(dāng)且僅當(dāng)SKIPIF1<0時(shí),三棱柱SKIPIF1<0的體積SKIPIF1<0取得最小值1,此時(shí),三棱柱SKIPIF1<0外接球的球心為SKIPIF1<0與SKIPIF1<0的交點(diǎn)O,且該球的直徑為SKIPIF1<0,所以球O的表面積為SKIPIF1<0.故答案為:SKIPIF1<0.8.如圖,在棱長為2的正方體SKIPIF1<0中,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0是線段SKIPIF1<0上的動(dòng)點(diǎn),則下列命題:①不存在點(diǎn)SKIPIF1<0,使SKIPIF1<0平面SKIPIF1<0;②三棱錐SKIPIF1<0的體積是定值;③直線SKIPIF1<0平面SKIPIF1<0④經(jīng)過SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)的球的表面積為SKIPIF1<0.正確的是______.【答案】②③④【分析】連接PQ,SKIPIF1<0,當(dāng)Q是SKIPIF1<0的中點(diǎn)時(shí),由線面平行的判定可證,即可判斷①,根據(jù)SKIPIF1<0即可判斷②,證明SKIPIF1<0、SKIPIF1<0,即可判斷③,分別取SKIPIF1<0,SKIPIF1<0的中點(diǎn)E,F(xiàn),構(gòu)造長方體SKIPIF1<0,其體對(duì)角線就是外接球的直徑,求出體對(duì)角線的長,可求出球的表面積,即可判斷④;【詳解】解:連接PQ,SKIPIF1<0,當(dāng)SKIPIF1<0是SKIPIF1<0的中點(diǎn)時(shí),因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,故①錯(cuò)誤;因?yàn)镾KIPIF1<0是線段SKIPIF1<0上的動(dòng)點(diǎn),SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0到平面SKIPIF1<0的距離,即為SKIPIF1<0到到平面SKIPIF1<0的距離SKIPIF1<0,所以SKIPIF1<0,故三棱錐SKIPIF1<0的體積是定值,即②正確;由正方體的性質(zhì)可得SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,同理可證SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,故③正確;當(dāng)SKIPIF1<0是SKIPIF1<0的中點(diǎn)時(shí),SKIPIF1<0分別取SKIPIF1<0,SKIPIF1<0的中點(diǎn)E,F(xiàn),構(gòu)造長方體SKIPIF1<0,則經(jīng)過SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)的球即為長方體SKIPIF1<0的外接球,設(shè)所求外接球的直徑為2R,則長方體SKIPIF1<0的體對(duì)角線即為所求的球的直徑,即SKIPIF1<0,所以經(jīng)過SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)的球的表面積為SKIPIF1<0,故④正確.故答案為:②③④9.如圖,已知圓SKIPIF1<0的直徑SKIPIF1<0長為2,上半圓圓弧上有一點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0是劣弧SKIPIF1<0上的動(dòng)點(diǎn),點(diǎn)SKIPIF1<0是下半圓弧上的動(dòng)點(diǎn),現(xiàn)以SKIPIF1<0為折線,將上、下半圓所在的平面折成直二面角,連接SKIPIF1<0則三棱錐SKIPIF1<0的最大體積為___________.【答案】SKIPIF1<0【分析】由于要使三棱錐SKIPIF1<0的體積最大,即三棱錐SKIPIF1<0的體積最大,需要SKIPIF1<0的面積最大且SKIPIF1<0到平面SKIPIF1<0的距離最大,結(jié)合條件計(jì)算即可.【詳解】如圖,要使三棱錐SKIPIF1<0的體積最大,即三棱錐SKIPIF1<0的體積最大,需要SKIPIF1<0的面積最大且SKIPIF1<0到平面SKIPIF1<0的距離最大.SKIPIF1<0當(dāng)SKIPIF1<0時(shí),最大值為SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,要使SKIPIF1<0到平面SKIPIF1<0的距離最大,只需要SKIPIF1<0到SKIPIF1<0的距離最大,則SKIPIF1<0為半圓弧SKIPIF1<0的中點(diǎn),此時(shí)SKIPIF1<0到平面SKIPIF1<0距離的最大值為1.所以,三棱錐SKIPIF1<0的最大體積為SKIPIF1<0故答案為:SKIPIF1<0.10.已知正四棱錐SKIPIF1<0的底面邊長為3,高為2,若該四棱錐的五個(gè)頂點(diǎn)都在一個(gè)球面上,則球心到四棱錐側(cè)面的距離為___________.【答案】SKIPIF1<0##SKIPIF1<0【分析】由條件確定球心位置,再由等體積法求球心到四棱錐側(cè)面的距離.【詳解】如圖所示,該四棱錐為SKIPIF1<0,底面中心為SKIPIF1<0,外接球球心為SKIPIF1<0,設(shè)SKIPIF1<0,由題意SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0是等腰三角形,SKIPIF1<0,SKIPIF1<0邊上的高為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,則三棱錐SKIPIF1<0的體積為SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故答案為:SKIPIF1<0.三、解答題11.如圖,SKIPIF1<0是正方形SKIPIF1<0所在平面外一點(diǎn),SKIPIF1<0,且平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是線段SKIPIF1<0,SKIPIF1<0的中點(diǎn).(1)求證:SKIPIF1<0(2)求證:SKIPIF1<0平面SKIPIF1<0(3)求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.【解析】(1)因?yàn)檎叫蜸KIPIF1<0,又平面SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.(2)取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,因?yàn)镾KIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,SKIPIF1<0因?yàn)镾KIPIF1<0是正方形SKIPIF1<0邊SKIPIF1<0中點(diǎn),所以SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,SKIPIF1<0即四邊形SKIPIF1<0是平行四邊形,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,故EFSKIPIF1<0平面SKIPIF1<0(3)如圖,設(shè)SKIPIF1<0,連接SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0為SKIPIF1<0中點(diǎn),所以SKIPIF1<0,又平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0平面SKIPIF1<0,即SKIPIF1<0是三棱錐SKIPIF1<0的高SKIPIF1<0由正方形SKIPIF1<0邊SKIPIF1<0,所以SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,因?yàn)镾KIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0.12(理科).如圖,在三棱錐SKIPIF1<0中,二面角SKIPIF1<0是直二面角,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上一點(diǎn),且SKIPIF1<0平面SKIPIF1<0.SKIPIF1<0分別為棱SKIPIF1<0上的動(dòng)點(diǎn),且SKIPIF1<0.(1)證明:SKIPIF1<0;(2)若平面SKIPIF1<0與平面SKIPIF1<0所成角的余弦值為SKIPIF1<0,求SKIPIF1<0的值.【解析】(1)證明:SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0SKIPIF1<0.(2)解:如圖,以點(diǎn)SKIPIF1<0為原點(diǎn),分別以SKIPIF1<0,SKIPIF1<0,過點(diǎn)SKIPIF1<0且與平面SKIPIF1<0垂直的直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)槠矫鍿KIPIF1<0與平面SKIPIF1<0所成角的余弦值為SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0為平面SKIPIF1<0的法向量,則SKIPIF1<0,即SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版塑料回收利用項(xiàng)目投資合作合同范本3篇
- 2025年度生態(tài)大棚建筑與生態(tài)農(nóng)業(yè)示范項(xiàng)目合同4篇
- 2025年度企業(yè)間知識(shí)產(chǎn)權(quán)歸屬及合作開發(fā)協(xié)議
- 2025年度銷售業(yè)務(wù)員銷售渠道拓展合同
- 二零二五年度商標(biāo)權(quán)授權(quán)合同補(bǔ)充協(xié)議
- 2025年度自愿不上學(xué)協(xié)議書-家庭教育支持與子女學(xué)業(yè)規(guī)劃合同
- 二零二五年度汽車抵押借款合同書合同解除通知
- 2025年度新型車間租賃安全協(xié)議書模板4篇
- 2025年度高新技術(shù)企業(yè)研發(fā)設(shè)備采購咨詢及招標(biāo)代理服務(wù)協(xié)議3篇
- 2025年行政訴訟上訴狀編制標(biāo)準(zhǔn):權(quán)威解讀版2篇
- 2024年醫(yī)銷售藥銷售工作總結(jié)
- GB/T 44888-2024政務(wù)服務(wù)大廳智能化建設(shè)指南
- 2023-2024學(xué)年江西省萍鄉(xiāng)市八年級(jí)(上)期末物理試卷
- 四則混合運(yùn)算100道題四年級(jí)上冊(cè)及答案
- 四川省高職單招電氣技術(shù)類《電子基礎(chǔ)》歷年考試真題試題庫(含答案)
- 2024年江西生物科技職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫帶解析答案
- 橋本甲狀腺炎-90天治療方案
- (2024年)安全注射培訓(xùn)課件
- 2024版《建設(shè)工程開工、停工、復(fù)工安全管理臺(tái)賬表格(流程圖、申請(qǐng)表、報(bào)審表、考核表、通知單等)》模版
- 部編版《道德與法治》六年級(jí)下冊(cè)教材分析萬永霞
- 酒店人防管理制度
評(píng)論
0/150
提交評(píng)論