版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年湖北武漢青山區(qū)中考二模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.已知二次函數(shù),當(dāng)自變量取時,其相應(yīng)的函數(shù)值小于0,則下列結(jié)論正確的是()A.取時的函數(shù)值小于0B.取時的函數(shù)值大于0C.取時的函數(shù)值等于0D.取時函數(shù)值與0的大小關(guān)系不確定2.2017年新設(shè)了雄安新區(qū),周邊經(jīng)濟受到刺激綜合實力大幅躍升,其中某地區(qū)生產(chǎn)總值預(yù)計可增長到305.5億元其中305.5億用科學(xué)記數(shù)法表示為()A.305.5×104B.3.055×102C.3.055×1010D.3.055×10113.二元一次方程組的解為()A. B. C. D.4.已知拋物線的圖像與軸交于、兩點(點在點的右側(cè)),與軸交于點.給出下列結(jié)論:①當(dāng)?shù)臈l件下,無論取何值,點是一個定點;②當(dāng)?shù)臈l件下,無論取何值,拋物線的對稱軸一定位于軸的左側(cè);③的最小值不大于;④若,則.其中正確的結(jié)論有()個.A.1個 B.2個 C.3個 D.4個5.已知a+b=4,c﹣d=﹣3,則(b+c)﹣(d﹣a)的值為()A.7 B.﹣7 C.1 D.﹣16.如圖,在菱形ABCD中,AB=5,∠BCD=120°,則△ABC的周長等于()A.20 B.15 C.10 D.57.如圖,是一個工件的三視圖,則此工件的全面積是()A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm28.計算3–(–9)的結(jié)果是()A.12 B.–12 C.6 D.–69.在平面直角坐標系中,將拋物線繞著它與軸的交點旋轉(zhuǎn)180°,所得拋物線的解析式是().A. B.C. D.10.如圖是二次函數(shù)的部分圖象,由圖象可知不等式的解集是()A. B. C.且 D.x<-1或x>5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直線a∥b,正方形ABCD的頂點A、B分別在直線a、b上.若∠2=73°,則∠1=.12.如圖所示,D、E之間要挖建一條直線隧道,為計算隧道長度,工程人員在線段AD和AE上選擇了測量點B,C,已知測得AD=100,AE=200,AB=40,AC=20,BC=30,則通過計算可得DE長為_____.13.如圖,在梯形中,,,點、分別是邊、的中點.設(shè),,那么向量用向量表示是________.14.已知Rt△ABC中,∠C=90°,AC=3,BC=,CD⊥AB,垂足為點D,以點D為圓心作⊙D,使得點A在⊙D外,且點B在⊙D內(nèi).設(shè)⊙D的半徑為r,那么r的取值范圍是_________.15.化簡的結(jié)果等于__.16.若關(guān)于x的分式方程有增根,則m的值為_____.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE始終經(jīng)過點A,EF與AC交于M點.(1)求證:△ABE∽△ECM;(2)探究:在△DEF運動過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長;若不能,請說明理由;(3)當(dāng)線段AM最短時,求重疊部分的面積.18.(8分)如圖,在正方形中,點是對角線上一個動點(不與點重合),連接過點作,交直線于點.作交直線于點,連接.(1)由題意易知,,觀察圖,請猜想另外兩組全等的三角形;;(2)求證:四邊形是平行四邊形;(3)已知,的面積是否存在最小值?若存在,請求出這個最小值;若不存在,請說明理由.19.(8分)某工廠現(xiàn)在平均每天比原計劃多生產(chǎn)50臺機器,現(xiàn)在生產(chǎn)600臺機器所需要時間與原計劃生產(chǎn)450臺機器所需時間相同.現(xiàn)在平均每天生產(chǎn)多少臺機器;生產(chǎn)3000臺機器,現(xiàn)在比原計劃提前幾天完成.20.(8分)已知:如圖,在△OAB中,OA=OB,⊙O經(jīng)過AB的中點C,與OB交于點D,且與BO的延長線交于點E,連接EC,CD.(1)試判斷AB與⊙O的位置關(guān)系,并加以證明;(2)若tanE=,⊙O的半徑為3,求OA的長.21.(8分)如圖,熱氣球的探測器顯示,從熱氣球A看一棟髙樓頂部B的仰角為30°,看這棟高樓底部C的俯角為60°,熱氣球A與高樓的水平距離為120m,求這棟高樓BC的高度.22.(10分)為評估九年級學(xué)生的體育成績情況,某校九年級500名學(xué)生全部參加了“中考體育模擬考試”,隨機抽取了部分學(xué)生的測試成績作為樣本,并繪制出如下兩幅不完整的統(tǒng)計表和頻數(shù)分布直方圖:成績x分人數(shù)頻率25≤x<3040.0830≤x<3580.1635≤x<40a0.3240≤x<45bc45≤x<50100.2(1)求此次抽查了多少名學(xué)生的成績;(2)通過計算將頻數(shù)分布直方圖補充完整;(3)若測試成績不低于40分為優(yōu)秀,請估計本次測試九年級學(xué)生中成績優(yōu)秀的人數(shù).23.(12分)旅游公司在景區(qū)內(nèi)配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營運規(guī)律如下:當(dāng)x不超過100元時,觀光車能全部租出;當(dāng)x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.(1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應(yīng)為多少元?(注:凈收入=租車收入﹣管理費)(2)當(dāng)每輛車的日租金為多少元時,每天的凈收入最多?24.某興趣小組進行活動,每個男生都頭戴藍色帽子,每個女生都頭戴紅色帽子.帽子戴好后,每個男生都看見戴紅色帽子的人數(shù)比戴藍色帽子的人數(shù)的2倍少1,而每個女生都看見戴藍色帽子的人數(shù)是戴紅色帽子的人數(shù)的.問該興趣小組男生、女生各有多少人?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
畫出函數(shù)圖象,利用圖象法解決問題即可;【詳解】由題意,函數(shù)的圖象為:∵拋物線的對稱軸x=,設(shè)拋物線與x軸交于點A、B,∴AB<1,∵x取m時,其相應(yīng)的函數(shù)值小于0,∴觀察圖象可知,x=m-1在點A的左側(cè),x=m-1時,y>0,故選B.【點睛】本題考查二次函數(shù)圖象上的點的坐標特征,解題的關(guān)鍵是學(xué)會利用函數(shù)圖象解決問題,體現(xiàn)了數(shù)形結(jié)合的思想.2、C【解析】解:305.5億=3.055×1.故選C.3、C【解析】
利用加減消元法解這個二元一次方程組.【詳解】解:①-②2,得:y=-2,將y=-2代入②,得:2x-2=4,解得,x=3,所以原方程組的解是.故選C.【點睛】本題考查了解二元一次方程組和解一元一次方程等知識點,解此題的關(guān)鍵是把二元一次方程組轉(zhuǎn)化成一元一次方程,題目比較典型,難度適中.4、C【解析】
①利用拋物線兩點式方程進行判斷;
②根據(jù)根的判別式來確定a的取值范圍,然后根據(jù)對稱軸方程進行計算;
③利用頂點坐標公式進行解答;
④利用兩點間的距離公式進行解答.【詳解】①y=ax1+(1-a)x-1=(x-1)(ax+1).則該拋物線恒過點A(1,0).故①正確;
②∵y=ax1+(1-a)x-1(a>0)的圖象與x軸有1個交點,
∴△=(1-a)1+8a=(a+1)1>0,
∴a≠-1.
∴該拋物線的對稱軸為:x=,無法判定的正負.
故②不一定正確;
③根據(jù)拋物線與y軸交于(0,-1)可知,y的最小值不大于-1,故③正確;
④∵A(1,0),B(-,0),C(0,-1),
∴當(dāng)AB=AC時,,解得:a=,故④正確.
綜上所述,正確的結(jié)論有3個.
故選C.【點睛】考查了二次函數(shù)與x軸的交點及其性質(zhì).(1).拋物線是軸對稱圖形.對稱軸為直線x=-,對稱軸與拋物線唯一的交點為拋物線的頂點P;特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0);(1).拋物線有一個頂點P,坐標為P(-b/1a,(4ac-b1)/4a),當(dāng)-=0,〔即b=0〕時,P在y軸上;當(dāng)Δ=b1-4ac=0時,P在x軸上;(3).二次項系數(shù)a決定拋物線的開口方向和大小;當(dāng)a>0時,拋物線開口向上;當(dāng)a<0時,拋物線開口向下;|a|越大,則拋物線的開口越?。?).一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置;當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;當(dāng)a與b異號時(即ab<0),對稱軸在y軸右;(5).常數(shù)項c決定拋物線與y軸交點;拋物線與y軸交于(0,c);(6).拋物線與x軸交點個數(shù)Δ=b1-4ac>0時,拋物線與x軸有1個交點;Δ=b1-4ac=0時,拋物線與x軸有1個交點;Δ=b1-4ac<0時,拋物線與x軸沒有交點.X的取值是虛數(shù)(x=-b±√b1-4ac乘上虛數(shù)i,整個式子除以1a);當(dāng)a>0時,函數(shù)在x=-b/1a處取得最小值f(-b/1a)=〔4ac-b1〕/4a;在{x|x<-b/1a}上是減函數(shù),在{x|x>-b/1a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y≥4ac-b1/4a}相反不變;當(dāng)b=0時,拋物線的對稱軸是y軸,這時,函數(shù)是偶函數(shù),解析式變形為y=ax1+c(a≠0).5、C【解析】試題分析:原式去括號可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.故選A.考點:代數(shù)式的求值;整體思想.6、B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等邊三角形.∴△ABC的周長=3AB=1.故選B7、C【解析】
先根據(jù)三視圖得到圓錐的底面圓的直徑為12cm,高為8cm,再計算母線長為10,根據(jù)圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形半徑等于圓錐的母線長計算圓錐的側(cè)面積和底面積的和即可.【詳解】圓錐的底面圓的直徑為12cm,高為8cm,所以圓錐的母線長==10,所以此工件的全面積=π62+2π610=96π(cm2).故答案選C.【點睛】本題考查的知識點是圓錐的面積及由三視圖判斷幾何體,解題的關(guān)鍵是熟練的掌握圓錐的面積及由三視圖判斷幾何體.8、A【解析】
根據(jù)有理數(shù)的減法,即可解答.【詳解】故選A.【點睛】本題考查了有理數(shù)的減法,解決本題的關(guān)鍵是熟記減去一個數(shù)等于加上這個數(shù)的相反數(shù).9、B【解析】
把拋物線y=x2+2x+3整理成頂點式形式并求出頂點坐標,再求出與y軸的交點坐標,然后求出所得拋物線的頂點,再利用頂點式形式寫出解析式即可.【詳解】解:∵y=x2+2x+3=(x+1)2+2,
∴原拋物線的頂點坐標為(-1,2),
令x=0,則y=3,
∴拋物線與y軸的交點坐標為(0,3),
∵拋物線繞與y軸的交點旋轉(zhuǎn)180°,
∴所得拋物線的頂點坐標為(1,4),
∴所得拋物線的解析式為:y=-x2+2x+3[或y=-(x-1)2+4].
故選:B.【點睛】本題考查了二次函數(shù)圖象與幾何變換,利用頂點的變化確定函數(shù)解析式的變化可以使求解更簡便.10、D【解析】利用二次函數(shù)的對稱性,可得出圖象與x軸的另一個交點坐標,結(jié)合圖象可得出的解集:由圖象得:對稱軸是x=2,其中一個點的坐標為(1,0),∴圖象與x軸的另一個交點坐標為(-1,0).由圖象可知:的解集即是y<0的解集,∴x<-1或x>1.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、107°【解析】
過C作d∥a,得到a∥b∥d,構(gòu)造內(nèi)錯角,根據(jù)兩直線平行,內(nèi)錯角相等,及平角的定義,即可得到∠1的度數(shù).【詳解】過C作d∥a,∴a∥b,∴a∥b∥d,∵四邊形ABCD是正方形,∴∠DCB=90°,∵∠2=73°,∴∠6=90°-∠2=17°,∵b∥d,∴∠3=∠6=17°,∴∠4=90°-∠3=73°,∴∠5=180°-∠4=107°,∵a∥d,∴∠1=∠5=107°,故答案為107°.【點睛】本題考查了平行線的性質(zhì)以及正方形性質(zhì)的運用,解題時注意:兩直線平行,內(nèi)錯角相等.解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯角.12、1.【解析】
先根據(jù)相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性質(zhì)解答即可.【詳解】∵∴又∵∠A=∠A,∴△ABC∽△AED,∴∵BC=30,∴DE=1,故答案為1.【點睛】考查相似三角形的判定與性質(zhì),掌握相似三角形的判定定理是解題的關(guān)鍵.13、【解析】分析:根據(jù)梯形的中位線等于上底與下底和的一半表示出EF,然后根據(jù)向量的三角形法則解答即可.詳解:∵點E、F分別是邊AB、CD的中點,∴EF是梯形ABCD的中位線,F(xiàn)C=DC,∴EF=(AD+BC).∵BC=3AD,∴EF=(AD+3AD)=2AD,由三角形法則得,=+=2+===2+.故答案為:2+.點睛:本題考查了平面向量,平面向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關(guān)鍵,本題還考查了梯形的中位線等于上底與下底和的一半.14、.【解析】
先根據(jù)勾股定理求出AB的長,進而得出CD的長,由點與圓的位置關(guān)系即可得出結(jié)論.【詳解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,∴AB==1.∵CD⊥AB,∴CD=.∵AD?BD=CD2,設(shè)AD=x,BD=1-x.解得x=,∴點A在圓外,點B在圓內(nèi),r的范圍是,故答案為.【點睛】本題考查的是點與圓的位置關(guān)系,熟知點與圓的三種位置關(guān)系是解答此題的關(guān)鍵.15、.【解析】
先通分變?yōu)橥帜阜质?,然后根?jù)分式的減法法則計算即可.【詳解】解:原式.故答案為:.【點睛】此題考查的是分式的減法,掌握分式的減法法則是解決此題的關(guān)鍵.16、±【解析】
增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.有增根,最簡公分母x-3=0,所以增根是x=3,把增根代入化為整式方程的方程即可求出m的值.【詳解】方程兩邊都乘x-3,得x-2(x-3)=m2,∵原方程增根為x=3,∴把x=3代入整式方程,得m=±.【點睛】解決增根問題的步驟:①確定增根的值;②化分式方程為整式方程;③把增根代入整式方程即可求得相關(guān)字母的值.三、解答題(共8題,共72分)17、(1)證明見解析;(2)能;BE=1或;(3)【解析】
(1)證明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;當(dāng)AE=EM時,則△ABE≌△ECM,∴CE=AB=5,∴BE=BC?EC=6?5=1,當(dāng)AM=EM時,則∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6?=;∴BE=1或;(3)解:設(shè)BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=,∴AM=5?CM,∴當(dāng)x=3時,AM最短為,又∵當(dāng)BE=x=3=BC時,∴點E為BC的中點,∴AE⊥BC,∴AE=,此時,EF⊥AC,∴EM=,S△AEM=.18、(1);(2)見解析;(3)存在,2【解析】
(1)利用正方形的性質(zhì)及全等三角形的判定方法證明全等即可;(2)由(1)可知,則有,從而得到,最后利用一組對邊平行且相等即可證明;(3)由(1)可知,則,從而得到是等腰直角三角形,則當(dāng)最短時,的面積最小,再根據(jù)AB的值求出PB的最小值即可得出答案.【詳解】解:(1)四邊形是正方形,,,,,,在和中,在和中,,故答案為;(2)證明:由(1)可知,,四邊形是平行四邊形.(3)解:存在,理由如下:是等腰直角三角形,最短時,的面積最小,當(dāng)時,最短,此時,的面積最小為.【點睛】本題主要考查全等三角形的判定及性質(zhì),平行四邊形的判定,掌握全等三角形的判定方法和平行四邊形的判定方法是解題的關(guān)鍵.19、(1)現(xiàn)在平均每天生產(chǎn)1臺機器.(2)現(xiàn)在比原計劃提前5天完成.【解析】
(1)因為現(xiàn)在生產(chǎn)600臺機器的時間與原計劃生產(chǎn)450臺機器的時間相同.所以可得等量關(guān)系為:現(xiàn)在生產(chǎn)600臺機器時間=原計劃生產(chǎn)450臺時間,由此列出方程解答即可;(2)由(1)中解得的數(shù)據(jù),原來用的時間-現(xiàn)在用的時間即可求得提前時間.【詳解】解:(1)設(shè)現(xiàn)在平均每天生產(chǎn)x臺機器,則原計劃可生產(chǎn)(x-50)臺.依題意得:,解得:x=1.檢驗x=1是原分式方程的解.(2)由題意得=20-15=5(天)∴現(xiàn)在比原計劃提前5天完成.【點睛】此題考查分式方程的實際運用,找出題目蘊含的數(shù)量關(guān)系是解決問題的關(guān)鍵.20、(1)AB與⊙O的位置關(guān)系是相切,證明見解析;(2)OA=1.【解析】
(1)先判斷AB與⊙O的位置關(guān)系,然后根據(jù)等腰三角形的性質(zhì)即可解答本題;(2)根據(jù)題三角形的相似可以求得BD的長,從而可以得到OA的長.【詳解】解:(1)AB與⊙O的位置關(guān)系是相切,證明:如圖,連接OC.∵OA=OB,C為AB的中點,∴OC⊥AB.∴AB是⊙O的切線;(2)∵ED是直徑,∴∠ECD=90°.∴∠E+∠ODC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E.又∵∠CBD=∠EBC,∴△BCD∽△BEC.∴.∴BC2=BD?BE.∵,∴.∴.設(shè)BD=x,則BC=2x.又BC2=BD?BE,∴(2x)2=x(x+6).解得x1=0,x2=2.∵BD=x>0,∴BD=2.∴OA=OB=BD+OD=2+3=1.【點睛】本題考查直線和圓的位置關(guān)系、等腰三角形的性質(zhì)、三角形的相似,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.21、這棟高樓的高度是【解析】
過A作AD⊥BC,垂足為D,在直角△ABD與直角△ACD中,根據(jù)三角函數(shù)的定義求得BD和CD,再根據(jù)BC=BD+CD即可求解.【詳解】過點A作AD⊥BC于點D,依題意得,,,AD=120,在Rt△ABD中,∴,在Rt△ADC中,∴,∴,答:這棟高樓的高度是.【點睛】本題主要考查了解直角三角形的應(yīng)用-仰角俯角問題,難度適中.對于一般三角形的計算,常用的方法是利用作高線轉(zhuǎn)化為直角三角形的計算.22、(1)50;(2)詳見解析;(3)220.【解析】
(1)利用1組的人數(shù)除以1組的頻率可求此次抽查了多少名學(xué)生的成績;(2)根據(jù)總數(shù)乘以3組的頻率可求a,用50減去其它各組的頻數(shù)即可求得b的值,再用1減去其它各組的頻率即可求得c的值,即可把頻數(shù)分布直方圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)蒙古自治區(qū)通遼市2024-2025學(xué)年九年級上學(xué)期期中考試英語試題(無答案聽力原文及音頻)
- 2014-2020年全球攝影行業(yè)市場分析報告(權(quán)威版)
- 2024至2030年中國塑殼電吹風(fēng)數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國仲痛舒噴務(wù)劑行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國BMX車架數(shù)據(jù)監(jiān)測研究報告
- 2024年中國銀基釬焊市場調(diào)查研究報告
- 2024年中國素色割絨毛巾布市場調(diào)查研究報告
- 2024年中國液壓頂拔器市場調(diào)查研究報告
- 2024年中國微機滴控箱式多用爐機組市場調(diào)查研究報告
- 2024年中國中央空調(diào)風(fēng)機調(diào)速開關(guān)市場調(diào)查研究報告
- 大學(xué)生創(chuàng)新創(chuàng)業(yè)基礎(chǔ)全書電子教案完整版課件最全ppt整本書教學(xué)教程最新講義
- 人衛(wèi)版內(nèi)科學(xué)下丘腦疾病
- 三年級上冊美術(shù)課件第10課 美麗的路燈|滬教版
- 四年級上冊美術(shù)課件-第10課 我的留言夾 丨贛美版 (14張PPT)
- 備用金使用表
- 圓二色譜原理
- 《油氣田開發(fā)方案設(shè)計》-1-5
- 連續(xù)性腎臟替代治療(CRRT)質(zhì)量控制標準
- Aspen工業(yè)優(yōu)化控制軟件龍頭啟示
- 細胞膜的結(jié)構(gòu)課件
- 第七章脆弱性及風(fēng)險評模型估(版本)詳解
評論
0/150
提交評論