版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省曲阜師范大學(xué)附屬中學(xué)2025年第二學(xué)期高三第二次模擬考試數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù),,的部分圖象如圖所示,則函數(shù)表達(dá)式為()A. B.C. D.2.如圖是一個(gè)算法流程圖,則輸出的結(jié)果是()A. B. C. D.3.1777年,法國科學(xué)家蒲豐在宴請(qǐng)客人時(shí),在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個(gè)客人發(fā)許多等質(zhì)量的,長度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對(duì)針落地的位置進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)共投針2212枚,與直線相交的有704枚.根據(jù)這次統(tǒng)計(jì)數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.4.在一個(gè)數(shù)列中,如果,都有(為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,叫做這個(gè)數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.5.函數(shù)的大致圖象為()A. B.C. D.6.已知,,,,則()A. B. C. D.7.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.8.已知集合(),若集合,且對(duì)任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.9.函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向左平移個(gè)單位10.的展開式中的系數(shù)是-10,則實(shí)數(shù)()A.2 B.1 C.-1 D.-211.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.12.已知函數(shù),若函數(shù)在上有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù),其中且,則______________.14.在正方體中,分別為棱的中點(diǎn),則直線與直線所成角的正切值為_________.15.已知(為虛數(shù)單位),則復(fù)數(shù)________.16.的角所對(duì)的邊分別為,且,,若,則的值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖中,為的中點(diǎn),,,.(1)求邊的長;(2)點(diǎn)在邊上,若是的角平分線,求的面積.18.(12分)已知,,求證:(1);(2).19.(12分)為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)得到如圖所示的頻率分布直方圖,若尺寸落在區(qū)間之外,則認(rèn)為該零件屬“不合格”的零件,其中,s分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).(1)求樣本平均數(shù)的大??;(2)若一個(gè)零件的尺寸是100cm,試判斷該零件是否屬于“不合格”的零件.20.(12分)已知橢圓的左焦點(diǎn)為F,上頂點(diǎn)為A,直線AF與直線垂直,垂足為B,且點(diǎn)A是線段BF的中點(diǎn).(I)求橢圓C的方程;(II)若M,N分別為橢圓C的左,右頂點(diǎn),P是橢圓C上位于第一象限的一點(diǎn),直線MP與直線交于點(diǎn)Q,且,求點(diǎn)P的坐標(biāo).21.(12分)如圖(1)五邊形中,,將沿折到的位置,得到四棱錐,如圖(2),點(diǎn)為線段的中點(diǎn),且平面.(1)求證:平面平面;(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.22.(10分)如圖,三棱柱中,底面是等邊三角形,側(cè)面是矩形,是的中點(diǎn),是棱上的點(diǎn),且.(1)證明:平面;(2)若,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點(diǎn)求出,化簡即得所求.【詳解】由圖像知,,,解得,因?yàn)楹瘮?shù)過點(diǎn),所以,,即,解得,因?yàn)?,所以?故選:A本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.2.A【解析】
執(zhí)行程序框圖,逐次計(jì)算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計(jì)算結(jié)果,故選A.本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計(jì)算與輸出,其中解答中執(zhí)行程序框圖,逐次計(jì)算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.3.D【解析】
根據(jù)統(tǒng)計(jì)數(shù)據(jù),求出頻率,用以估計(jì)概率.【詳解】.故選:D.本題以數(shù)學(xué)文化為背景,考查利用頻率估計(jì)概率,屬于基礎(chǔ)題.4.B【解析】
計(jì)算出的值,推導(dǎo)出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項(xiàng)和.【詳解】由題意可知,則對(duì)任意的,,則,,由,得,,,,因此,.故選:B.本題考查數(shù)列求和,考查了數(shù)列的新定義,推導(dǎo)出數(shù)列的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.5.A【解析】
利用特殊點(diǎn)的坐標(biāo)代入,排除掉C,D;再由判斷A選項(xiàng)正確.【詳解】,排除掉C,D;,,,.故選:A.本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點(diǎn),采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.6.D【解析】
令,求,利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,從而可得,設(shè),利用導(dǎo)數(shù)證出為單調(diào)遞減函數(shù),從而證出,即可得到答案.【詳解】時(shí),令,求導(dǎo),,故單調(diào)遞增:∴,當(dāng),設(shè),,又,,即,故.故選:D本題考查了作差法比較大小,考查了構(gòu)造函數(shù)法,利用導(dǎo)數(shù)判斷式子的大小,屬于中檔題.7.D【解析】
根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:本題主要考查了由三視圖還原幾何體,棱錐表面積的計(jì)算,考查了學(xué)生的運(yùn)算能力,屬于中檔題.8.C【解析】
根據(jù)題目中的基底定義求解.【詳解】因?yàn)?,,,,,,所以能作為集合的基底,故選:C本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎(chǔ)題.9.C【解析】
根據(jù)正弦型函數(shù)的圖象得到,結(jié)合圖像變換知識(shí)得到答案.【詳解】由圖象知:,∴.又時(shí)函數(shù)值最大,所以.又,∴,從而,,只需將的圖象向左平移個(gè)單位即可得到的圖象,故選C.已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點(diǎn)法”中相對(duì)應(yīng)的特殊點(diǎn)求,一般用最高點(diǎn)或最低點(diǎn)求.10.C【解析】
利用通項(xiàng)公式找到的系數(shù),令其等于-10即可.【詳解】二項(xiàng)式展開式的通項(xiàng)為,令,得,則,所以,解得.故選:C本題考查求二項(xiàng)展開式中特定項(xiàng)的系數(shù),考查學(xué)生的運(yùn)算求解能力,是一道容易題.11.D【解析】
根據(jù)框圖,模擬程序運(yùn)行,即可求出答案.【詳解】運(yùn)行程序,,
,,,,,結(jié)束循環(huán),故輸出,故選:D.本題主要考查了程序框圖,循環(huán)結(jié)構(gòu),條件分支結(jié)構(gòu),屬于中檔題.12.B【解析】
根據(jù)分段函數(shù),分當(dāng),,將問題轉(zhuǎn)化為的零點(diǎn)問題,用數(shù)形結(jié)合的方法研究.【詳解】當(dāng)時(shí),,令,在是增函數(shù),時(shí),有一個(gè)零點(diǎn),當(dāng)時(shí),,令當(dāng)時(shí),,在上單調(diào)遞增,當(dāng)時(shí),,在上單調(diào)遞減,所以當(dāng)時(shí),取得最大值,因?yàn)樵谏嫌?個(gè)零點(diǎn),所以當(dāng)時(shí),有2個(gè)零點(diǎn),如圖所示:所以實(shí)數(shù)的取值范圍為綜上可得實(shí)數(shù)的取值范圍為,故選:B本題主要考查了函數(shù)的零點(diǎn)問題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問題的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先化簡函數(shù)的解析式,在求出,從而求得的值.【詳解】由題意,函數(shù)可化簡為,所以,所以.故答案為:0.本題主要考查了二項(xiàng)式定理的應(yīng)用,以及導(dǎo)數(shù)的運(yùn)算和函數(shù)值的求解,其中解答中正確化簡函數(shù)的解析式,準(zhǔn)確求解導(dǎo)數(shù)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.14.【解析】
由中位線定理和正方體性質(zhì)得,從而作出異面直線所成的角,在三角形中計(jì)算可得.【詳解】如圖,連接,,,∵分別為棱的中點(diǎn),∴,又正方體中,即是平行四邊形,∴,∴,(或其補(bǔ)角)就是直線與直線所成角,是等邊三角形,∴=60°,其正切值為.故答案為:.本題考查異面直線所成的角,解題關(guān)鍵是根據(jù)定義作出異面直線所成的角.15.【解析】
解:故答案為:本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,屬于基礎(chǔ)題.16.【解析】
先利用余弦定理求出,再用正弦定理求出并把轉(zhuǎn)化為與邊有關(guān)的等式,結(jié)合可求的值.【詳解】因?yàn)椋?,因?yàn)?,所?由正弦定理可得三角形外接圓的半徑滿足,所以即.因?yàn)椋獾没颍ㄉ幔?故答案為:.本題考查正弦定理、余弦定理在解三角形中的應(yīng)用,注意結(jié)合求解目標(biāo)對(duì)所得的方程組變形整合后整體求解,本題屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)10;(2).【解析】
(1)由題意可得cos∠ADB=﹣cos∠ADC,由已知利用余弦定理可得:9+BD2﹣52+9+BD2﹣16=0,進(jìn)而解得BC的值.(2)由(1)可知△ADC為直角三角形,可求S△ADC6,S△ABC=2S△ADC=12,利用角平分線的性質(zhì)可得,根據(jù)S△ABC=S△BCE+S△ACE可求S△BCE的值.【詳解】(1)因?yàn)樵谶吷希?,在和中由余弦定理,得,因?yàn)?,,,,所以,所以?所以邊的長為10.(2)由(1)知為直角三角形,所以,.因?yàn)槭堑慕瞧椒志€,所以.所以,所以.即的面積為.本題主要考查了余弦定理,三角形的面積公式,角平分線的性質(zhì)在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.18.(1)見解析;(2)見解析.【解析】
(1)結(jié)合基本不等式可證明;(2)利用基本不等式得,即,同理得其他兩個(gè)式子,三式相加可證結(jié)論.【詳解】(1)∵,∴,當(dāng)且僅當(dāng)a=b=c等號(hào)成立,∴;(2)由基本不等式,∴,同理,,∴,當(dāng)且僅當(dāng)a=b=c等號(hào)成立∴.本題考查不等式的證明,考查用基本不等式證明不等式成立.解題關(guān)鍵是發(fā)現(xiàn)基本不等式的形式,方法是綜合法.19.(1)66.5(2)屬于【解析】
(1)利用頻率分布直方圖的平均數(shù)公式求解;(2)求出,即可判斷得解.【詳解】(1)(2)所以該零件屬于“不合格”的零件本題主要考查頻率分布圖中平均數(shù)的計(jì)算和應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.20.(I).(II)【解析】
(I)寫出坐標(biāo),利用直線與直線垂直,得到.求出點(diǎn)的坐標(biāo)代入,可得到的一個(gè)關(guān)系式,由此求得和的值,進(jìn)而求得橢圓方程.(II)設(shè)出點(diǎn)的坐標(biāo),由此寫出直線的方程,從而求得點(diǎn)的坐標(biāo),代入,化簡可求得點(diǎn)的坐標(biāo).【詳解】(I)∵橢圓的左焦點(diǎn),上頂點(diǎn),直線AF與直線垂直∴直線AF的斜率,即①又點(diǎn)A是線段BF的中點(diǎn)∴點(diǎn)的坐標(biāo)為又點(diǎn)在直線上∴②∴由①②得:∴∴橢圓的方程為.(II)設(shè)由(I)易得頂點(diǎn)M、N的坐標(biāo)為∴直線MP的方程是:由得:又點(diǎn)P在橢圓上,故∴∴∴或(舍)∴∴點(diǎn)P的坐標(biāo)為本小題主要考查直線和圓錐曲線的位置關(guān)系,考查兩直線垂直的條件,考查向量數(shù)量積的運(yùn)算.屬于中檔題.在解題過程中,首先閱讀清楚題意,題目所敘述的坐標(biāo)、所敘述的直線是怎么得到的,向量的數(shù)量積對(duì)應(yīng)的坐標(biāo)都有哪一些,應(yīng)該怎么得到,這些在讀題的時(shí)候需要分析清楚.21.(1)見解析(2)【解析】試題分析:(1)根據(jù)已知條件由線線垂直得出線面垂直,再根據(jù)面面垂直的判定定理證得成立;(2)通過已知條件求出各邊長度,建系如圖所示,求出平面的法向量,根據(jù)線面角公式代入坐標(biāo)求得結(jié)果.試題解析:(1)證明:取的中點(diǎn),連接,則,又,所以,則四邊形為平行四邊形,所以,又平面,∴平面,∴.由即及為的中點(diǎn),可得為等邊三角形,∴,又,∴,∴,∴平面平面,∴平面平面.(2)解:,∴為直線與所成的角,由(1)可得,∴,∴,設(shè),則,取的中點(diǎn),連接,過作的平行線,可建立如圖所示的空間直角坐標(biāo)系,則,∴,所以,設(shè)為平面的法向量,則,即,取,則為平面的一個(gè)法向量,∵,則直線與平面所成角的正弦值為.點(diǎn)睛:判定直線和平面垂直的方法:①定義法.②利用判定定理:一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線和此平面垂直.③推論:如果在兩條平行直線中,有一條垂直于一個(gè)平面,那么另一條直線也垂直于這個(gè)平面.平面與平面垂
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版小餐飲店服務(wù)員試用期勞務(wù)合同范本3篇
- 2025版地質(zhì)災(zāi)害應(yīng)急土石方拉運(yùn)與救援合同3篇
- 南山區(qū)自主創(chuàng)新產(chǎn)業(yè)發(fā)展專項(xiàng)資金文化產(chǎn)業(yè)發(fā)展政策解讀課件2
- 2025版衛(wèi)生巾紙產(chǎn)品綠色認(rèn)證與環(huán)保標(biāo)簽使用合同3篇
- 2025年度個(gè)人合伙律師事務(wù)所退伙專業(yè)服務(wù)權(quán)轉(zhuǎn)移合同4篇
- 《社保及公積金培訓(xùn)》課件
- 2025版商業(yè)地產(chǎn)水電設(shè)施建設(shè)合同示范文本3篇
- 2025版室內(nèi)外景觀規(guī)劃設(shè)計(jì)服務(wù)費(fèi)用合同3篇
- 2025版小企業(yè)勞動(dòng)合同標(biāo)準(zhǔn)文本與執(zhí)行要點(diǎn)6篇
- 2025版土地抵押資產(chǎn)證券化合同模板3篇
- 2025貴州貴陽市屬事業(yè)單位招聘筆試和高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年廣東省公務(wù)員錄用考試《行測》試題及答案解析
- 結(jié)構(gòu)力學(xué)本構(gòu)模型:斷裂力學(xué)模型:斷裂力學(xué)實(shí)驗(yàn)技術(shù)教程
- PDCA提高臥床患者踝泵運(yùn)動(dòng)的執(zhí)行率
- 黑色素的合成與美白產(chǎn)品的研究進(jìn)展
- 金蓉顆粒-臨床用藥解讀
- 法治副校長專題培訓(xùn)課件
- 《幼兒園健康》課件精1
- 汽車、電動(dòng)車電池火災(zāi)應(yīng)對(duì)
- 中醫(yī)藥適宜培訓(xùn)-刮痧療法教學(xué)課件
- 免疫組化he染色fishish
評(píng)論
0/150
提交評(píng)論