新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點(diǎn)提升專題14 圓錐曲線中的證明問題(原卷版)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點(diǎn)提升專題14 圓錐曲線中的證明問題(原卷版)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點(diǎn)提升專題14 圓錐曲線中的證明問題(原卷版)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點(diǎn)提升專題14 圓錐曲線中的證明問題(原卷版)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點(diǎn)提升專題14 圓錐曲線中的證明問題(原卷版)_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題14圓錐曲線中的證明問題一、考情分析圓錐曲線中的證明問題在高考時(shí)有出現(xiàn),主要有兩大類:一是證明點(diǎn)線位置關(guān)系,如直線或曲線過某個(gè)點(diǎn)、直線平行與垂直、直線對(duì)稱等問題,二是證明直線與圓錐曲線中的一些數(shù)量關(guān)系,如相等與不相等.二、解題秘籍(一)證明直線或圓過定點(diǎn)證明直線過定點(diǎn),通常是設(shè)出直線方程SKIPIF1<0,由已知條件確定SKIPIF1<0的關(guān)系.若SKIPIF1<0,則SKIPIF1<0,則直線過定點(diǎn)SKIPIF1<0,證明圓過定點(diǎn),常見題型是證明以AB為直徑的圓過定點(diǎn)P,只需證明SKIPIF1<0.【例1】(2023屆重慶市南開中學(xué)校高三上學(xué)期質(zhì)量檢測(cè))已知橢圓C:SKIPIF1<0的離心率為SKIPIF1<0,橢圓的上頂點(diǎn)B到兩焦點(diǎn)的距離之和為4.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若直線l:SKIPIF1<0與橢圓C交于異于點(diǎn)B的兩點(diǎn)P,Q,直線BP,BQ與x軸相交于SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,求證:直線SKIPIF1<0過一定點(diǎn),并求出定點(diǎn)坐標(biāo).【解析】(1)∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故橢圓方程為SKIPIF1<0;(2)聯(lián)立直線和橢圓可得SKIPIF1<0,解得SKIPIF1<0,于是有:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.由題意BP:SKIPIF1<0,BQ:SKIPIF1<0,分別和SKIPIF1<0聯(lián)立得,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0整理得SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0或者SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0過點(diǎn)B,與題意矛盾,應(yīng)舍去.故直線SKIPIF1<0的方程為:SKIPIF1<0,過定點(diǎn)為SKIPIF1<0.【例2】(2023屆福建省福州華僑中學(xué)高三上學(xué)期第二次考試)在平面直角坐標(biāo)系SKIPIF1<0中,已知點(diǎn)SKIPIF1<0,直線SKIPIF1<0,點(diǎn)M到l的距離為d,若點(diǎn)M滿足SKIPIF1<0,記M的軌跡為C.(1)求C的方程;(2)過點(diǎn)SKIPIF1<0且斜率不為0的直線與C交于P,Q兩點(diǎn),設(shè)SKIPIF1<0,證明:以P,Q為直徑的圓經(jīng)過點(diǎn)A.【解析】(1)設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,兩邊平方整理得SKIPIF1<0,則所求曲線SKIPIF1<0的方程為SKIPIF1<0.(2)設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立方程SKIPIF1<0,消去SKIPIF1<0并整理得SKIPIF1<0,因?yàn)橹本€SKIPIF1<0與SKIPIF1<0交于兩點(diǎn),故SKIPIF1<0,此時(shí)SKIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0,即以P,Q為直徑的圓經(jīng)過點(diǎn)A.(二)證明與斜率有關(guān)的定值問題證明與斜率有關(guān)的定值問題通常是證明斜率之和或斜率之積為定值問題,此類問題通常是把斜率之和或斜率之積用點(diǎn)的坐標(biāo)表示,再通過化簡(jiǎn)使結(jié)果為定值,此外證明垂直問題可轉(zhuǎn)化為斜率之積為SKIPIF1<0,證明兩直線關(guān)于直線SKIPIF1<0或SKIPIF1<0對(duì)稱,可轉(zhuǎn)化為證明斜率之和為0.【例3】(2023屆河南省安陽(yáng)市高三上學(xué)期10月月考)已知橢圓SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,面積為SKIPIF1<0的正方形ABCD的頂點(diǎn)都在SKIPIF1<0上.(1)求SKIPIF1<0的方程;(2)已知P為橢圓SKIPIF1<0上一點(diǎn),過點(diǎn)P作SKIPIF1<0的兩條切線SKIPIF1<0和SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0的斜率分別為SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0為定值.【解析】(1)根據(jù)對(duì)稱性,不妨設(shè)正方形的一個(gè)頂點(diǎn)為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0.①又SKIPIF1<0,②由①②解得SKIPIF1<0,SKIPIF1<0,故所求橢圓方程為SKIPIF1<0.(2)由已知及(1)可得SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0.設(shè)過點(diǎn)P與SKIPIF1<0相切的直線l的方程為SKIPIF1<0,與SKIPIF1<0聯(lián)立消去y整理可得SKIPIF1<0,令SKIPIF1<0,整理可得SKIPIF1<0,③根據(jù)題意SKIPIF1<0和SKIPIF1<0為方程③的兩個(gè)不等實(shí)根,所以SKIPIF1<0,即SKIPIF1<0為定值SKIPIF1<0.【例4】(2023屆天津市第四十七中學(xué)高三上學(xué)期測(cè)試)已知橢圓SKIPIF1<0:SKIPIF1<0的右焦點(diǎn)和上頂點(diǎn)均在直線SKIPIF1<0上.(1)求橢圓SKIPIF1<0的方程;(2)已知點(diǎn)SKIPIF1<0,若過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0交于不同的兩點(diǎn)SKIPIF1<0,SKIPIF1<0.直線SKIPIF1<0和直線SKIPIF1<0的斜率分別為SKIPIF1<0和SKIPIF1<0,求證:SKIPIF1<0為定值.【解析】(1)對(duì)于直線SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)闄E圓的右焦點(diǎn)和上頂點(diǎn)均在直線SKIPIF1<0上,所以SKIPIF1<0,所以SKIPIF1<0,所以橢圓方程為SKIPIF1<0,(2)因?yàn)镾KIPIF1<0在橢圓外,過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0交于不同的兩點(diǎn),所以直線SKIPIF1<0的斜率一定存在,所以設(shè)直線SKIPIF1<0方程為SKIPIF1<0,設(shè)SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(三)證明與線段長(zhǎng)度有關(guān)的等式證明與線段長(zhǎng)度有關(guān)的等式問題,一般是利用距離公式或弦長(zhǎng)公式寫出長(zhǎng)度表達(dá)式,再借助根與系數(shù)之間的關(guān)系或斜率、截距等證明等式兩邊相等.【例5】(2023屆江蘇省高三上學(xué)期起航調(diào)研)在平面直角坐標(biāo)系xOy中,拋物線SKIPIF1<0.SKIPIF1<0,SKIPIF1<0為C上兩點(diǎn),且SKIPIF1<0,SKIPIF1<0分別在第一、四象限.直線SKIPIF1<0與x正半軸交于SKIPIF1<0,與y負(fù)半軸交于SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0橫坐標(biāo)的取值范圍;(2)記SKIPIF1<0的重心為G,直線SKIPIF1<0,SKIPIF1<0的斜率分別為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.若SKIPIF1<0,證明:λ為定值.【解析】(1)設(shè)SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,直線SKIPIF1<0的方程為:SKIPIF1<0,整理可得,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0橫坐標(biāo)的取值范圍SKIPIF1<0;(2)SKIPIF1<0的重心為SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0,化簡(jiǎn)得,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0.即SKIPIF1<0,所以λ為定值.【例6】已知雙曲線SKIPIF1<0的離心率是SKIPIF1<0,點(diǎn)SKIPIF1<0是雙曲線SKIPIF1<0的一個(gè)焦點(diǎn),且點(diǎn)SKIPIF1<0到雙曲線SKIPIF1<0的一條漸近線的距離是2.(1)求雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程.(2)設(shè)點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,過點(diǎn)SKIPIF1<0作兩條直線SKIPIF1<0,直線SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0兩點(diǎn),直線SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0兩點(diǎn).若直線SKIPIF1<0與直線SKIPIF1<0的傾斜角互補(bǔ),證明:SKIPIF1<0.【解析】根據(jù)雙曲線的對(duì)稱性,不妨設(shè)SKIPIF1<0,其漸近線方程為SKIPIF1<0,因?yàn)榻裹c(diǎn)SKIPIF1<0到雙曲線SKIPIF1<0的一條漸近線的距離是2.所以SKIPIF1<0,因?yàn)殡p曲線SKIPIF1<0的離心率是SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0所以,雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)證明:由題意可知直線SKIPIF1<0的斜率存在,設(shè)SKIPIF1<0,直線SKIPIF1<0.聯(lián)立SKIPIF1<0整理得SKIPIF1<0,所以,SKIPIF1<0.故SKIPIF1<0.設(shè)直線SKIPIF1<0的斜率為SKIPIF1<0,同理可得SKIPIF1<0.因?yàn)橹本€SKIPIF1<0與直線SKIPIF1<0的傾斜角互補(bǔ),所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.(四)證明代數(shù)式的值為定值或證明與代數(shù)式有關(guān)的恒等式證明此類問題一般是把代數(shù)式用點(diǎn)的坐標(biāo)表示后化簡(jiǎn),或構(gòu)造方程求解【例7】(2023屆甘肅省張掖市重點(diǎn)校高三上學(xué)期檢測(cè))橢圓SKIPIF1<0的方程為SKIPIF1<0,過橢圓左焦點(diǎn)SKIPIF1<0且垂直于SKIPIF1<0軸的直線在第二象限與橢圓相交于點(diǎn)SKIPIF1<0,橢圓的右焦點(diǎn)為SKIPIF1<0,已知SKIPIF1<0,橢圓過點(diǎn)SKIPIF1<0.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)過橢圓SKIPIF1<0的右焦點(diǎn)SKIPIF1<0作直線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0兩點(diǎn),交SKIPIF1<0軸于SKIPIF1<0點(diǎn),若SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0為定值.【解析】(1)依題可知:SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0又∵橢圓SKIPIF1<0過點(diǎn)SKIPIF1<0,則SKIPIF1<0聯(lián)立SKIPIF1<0可得SKIPIF1<0,橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,由題意可知,直線SKIPIF1<0的斜率存在,可設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,可得SKIPIF1<0,由于點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0的內(nèi)部,直線SKIPIF1<0與橢圓SKIPIF1<0必有兩個(gè)交點(diǎn),由韋達(dá)定理可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【例8】(2023屆廣東省揭陽(yáng)市高三上學(xué)期8月調(diào)研)已知SKIPIF1<0?SKIPIF1<0是橢圓SKIPIF1<0:SKIPIF1<0的左?右焦點(diǎn),點(diǎn)SKIPIF1<0SKIPIF1<0是橢圓上的動(dòng)點(diǎn).(1)求SKIPIF1<0的重心SKIPIF1<0的軌跡方程;(2)設(shè)點(diǎn)SKIPIF1<0是SKIPIF1<0的內(nèi)切圓圓心,求證:SKIPIF1<0.【解析】(1)連接SKIPIF1<0,由三角形重心性質(zhì)知SKIPIF1<0在SKIPIF1<0的三等分點(diǎn)處(靠近原點(diǎn))設(shè)SKIPIF1<0,則有SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0SKIPIF1<0的重心SKIPIF1<0的軌跡方程為SKIPIF1<0;(2)根據(jù)對(duì)稱性,不妨設(shè)點(diǎn)SKIPIF1<0在第一象限內(nèi),易知圓SKIPIF1<0的半徑為等于SKIPIF1<0,利用等面積法有:SKIPIF1<0結(jié)合橢圓定義:SKIPIF1<0有SKIPIF1<0,解得SKIPIF1<0由SKIPIF1<0?SKIPIF1<0兩點(diǎn)的坐標(biāo)可知直線SKIPIF1<0的方程為SKIPIF1<0根據(jù)圓心SKIPIF1<0到直線SKIPIF1<0的距離等于半徑,有SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,又SKIPIF1<0化簡(jiǎn)得SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0由已知得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0所以SKIPIF1<0,即SKIPIF1<0.三、跟蹤檢測(cè)1.(2023屆湖南省長(zhǎng)沙市一中等名校聯(lián)考聯(lián)合體高三上學(xué)期11月聯(lián)考)設(shè)橢圓SKIPIF1<0:SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0是該橢圓SKIPIF1<0的下頂點(diǎn)和右頂點(diǎn),且SKIPIF1<0,若該橢圓的離心率為SKIPIF1<0.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)經(jīng)過點(diǎn)SKIPIF1<0的直線SKIPIF1<0:SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點(diǎn)(點(diǎn)SKIPIF1<0在點(diǎn)SKIPIF1<0下方),過點(diǎn)SKIPIF1<0作SKIPIF1<0軸的垂線交直線SKIPIF1<0于點(diǎn)SKIPIF1<0,交直線SKIPIF1<0于點(diǎn)SKIPIF1<0,求證:SKIPIF1<0為定值.2.(2023屆河南省焦作市高三上學(xué)期期中)已知橢圓SKIPIF1<0:SKIPIF1<0的離心率為SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0,橢圓SKIPIF1<0的右頂點(diǎn)SKIPIF1<0滿足SKIPIF1<0.(1)求橢圓SKIPIF1<0上一點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的最小距離;(2)若經(jīng)過SKIPIF1<0點(diǎn)的直線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點(diǎn),證明:當(dāng)直線SKIPIF1<0的傾斜角任意變化時(shí),總存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0.3.已知橢圓SKIPIF1<0的長(zhǎng)軸長(zhǎng)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的左、右焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上運(yùn)動(dòng),且SKIPIF1<0的最小值為SKIPIF1<0.連接SKIPIF1<0,SKIPIF1<0并延長(zhǎng)分別交橢圓SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點(diǎn).(1)求SKIPIF1<0的方程;(2)證明:SKIPIF1<0為定值.4.(2022屆湖北省十堰市丹江口市高三下學(xué)期模擬)已知雙曲線SKIPIF1<0的左、右頂點(diǎn)分別為SKIPIF1<0,右焦點(diǎn)為SKIPIF1<0,點(diǎn)P為C上一動(dòng)點(diǎn)(異于SKIPIF1<0兩點(diǎn)),直線SKIPIF1<0和直線SKIPIF1<0與直線SKIPIF1<0分別交于M,N兩點(diǎn),當(dāng)SKIPIF1<0垂直于x軸時(shí),SKIPIF1<0的面積為2.(1)求C的方程;(2)求證:SKIPIF1<0為定值,并求出該定值.5.(2023屆湖北省荊荊宜三校高三上學(xué)期10月聯(lián)考)記以坐標(biāo)原點(diǎn)為頂點(diǎn)、SKIPIF1<0為焦點(diǎn)的拋物線為SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與拋物線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn).(1)已知點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,求SKIPIF1<0最大時(shí)直線SKIPIF1<0的傾斜角;(2)當(dāng)SKIPIF1<0的斜率為SKIPIF1<0時(shí),若平行SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),且SKIPIF1<0與SKIPIF1<0相交于點(diǎn)SKIPIF1<0,證明:點(diǎn)SKIPIF1<0在定直線上.6.在平面直角坐標(biāo)系SKIPIF1<0中,點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,以線段SKIPIF1<0為直徑的圓與SKIPIF1<0軸相切.(1)求點(diǎn)SKIPIF1<0的軌跡SKIPIF1<0的方程;(2)設(shè)SKIPIF1<0是SKIPIF1<0上橫坐標(biāo)為2的點(diǎn),SKIPIF1<0的平行線SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點(diǎn),交曲線SKIPIF1<0在SKIPIF1<0處的切線于點(diǎn)SKIPIF1<0,求證:SKIPIF1<0.7.已知雙曲線SKIPIF1<0,雙曲線SKIPIF1<0的右焦點(diǎn)為F,圓C的圓心在y軸正半軸上,且經(jīng)過坐標(biāo)原點(diǎn)O,圓C與雙曲線Γ的右支交于A、B兩點(diǎn).(1)當(dāng)△OFA是以F為直角頂點(diǎn)的直角三角形,求△OFA的面積;(2)若點(diǎn)A的坐標(biāo)是SKIPIF1<0,求直線AB的方程;(3)求證:直線AB與圓x2+y2=2相切.8.(2023屆湖北省重點(diǎn)高中智學(xué)聯(lián)盟高三上學(xué)期10月聯(lián)考)已知直線SKIPIF1<0:SKIPIF1<0與橢圓SKIPIF1<0:SKIPIF1<0相切于點(diǎn)SKIPIF1<0,與直線SKIPIF1<0:SKIPIF1<0相交于點(diǎn)SKIPIF1<0(異于點(diǎn)SKIPIF1<0).(1)求點(diǎn)SKIPIF1<0的坐標(biāo);(2)直線SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0兩點(diǎn),證明:SKIPIF1<0.9.(2023屆重慶市巴蜀中學(xué)校2023屆高三上學(xué)期月考)已知橢圓SKIPIF1<0的左?右頂點(diǎn)分別為SKIPIF1<0,橢圓SKIPIF1<0的長(zhǎng)半軸的長(zhǎng)等于它的焦距,且過點(diǎn)SKIPIF1<0.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0相交于SKIPIF1<0兩點(diǎn)(不同于SKIPIF1<0),直線SKIPIF1<0與直線SKIPIF1<0相交于點(diǎn)SKIPIF1<0,直線SKIPIF1<0與直線SKIPIF1<0相交于點(diǎn)SKIPIF1<0,證明:SKIPIF1<0軸.10.已知拋物線C:SKIPIF1<0,其焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),直線l與拋物線C相交于不同的兩點(diǎn)A,B,M為AB的中點(diǎn).(1)若SKIPIF1<0,M的坐標(biāo)為SKIPIF1<0,求直線l的方程.(2)若直線l過焦點(diǎn)F,AB的垂直平分線交x軸于點(diǎn)N,求證:SKIPIF1<0為定值.11.(2023屆河北省邯鄲市大名縣第一中學(xué)高三月考)己知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,左頂點(diǎn)為SKIPIF1<0,離心率為SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)若直線SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0,線段SKIPIF1<0的中點(diǎn)分別為SKIPIF1<0.設(shè)過點(diǎn)SKIPIF1<0且垂直于SKIPIF1<0軸的直線為SKIPIF1<0,若直線SKIPIF1<0與直線SKIPIF1<0交于點(diǎn)SKIPIF1<0,直線SKIPIF1<0與直線SKIPIF1<0交于點(diǎn)SKIPIF1<0,求證:SKIPIF1<0為定值.12.已知拋物線SKIPIF1<0的焦點(diǎn)到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論