新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題20 解析幾何中的范圍、最值和探索性問題(講)(解析版)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題20 解析幾何中的范圍、最值和探索性問題(講)(解析版)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題20 解析幾何中的范圍、最值和探索性問題(講)(解析版)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題20 解析幾何中的范圍、最值和探索性問題(講)(解析版)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題20 解析幾何中的范圍、最值和探索性問題(講)(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩26頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第一篇熱點(diǎn)、難點(diǎn)突破篇專題20解析幾何中的范圍、最值和探索性問題(講)真題體驗(yàn)感悟高考1.(2022·浙江·統(tǒng)考高考真題)如圖,已知橢圓SKIPIF1<0.設(shè)A,B是橢圓上異于SKIPIF1<0的兩點(diǎn),且點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,直線SKIPIF1<0分別交直線SKIPIF1<0于C,D兩點(diǎn).(1)求點(diǎn)P到橢圓上點(diǎn)的距離的最大值;(2)求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)設(shè)SKIPIF1<0是橢圓上任意一點(diǎn),再根據(jù)兩點(diǎn)間的距離公式求出SKIPIF1<0,再根據(jù)二次函數(shù)的性質(zhì)即可求出;(2)設(shè)直線SKIPIF1<0與橢圓方程聯(lián)立可得SKIPIF1<0,再將直線SKIPIF1<0方程與SKIPIF1<0的方程分別聯(lián)立,可解得點(diǎn)SKIPIF1<0的坐標(biāo),再根據(jù)兩點(diǎn)間的距離公式求出SKIPIF1<0,最后代入化簡(jiǎn)可得SKIPIF1<0,由柯西不等式即可求出最小值.【詳解】(1)設(shè)SKIPIF1<0是橢圓上任意一點(diǎn),SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),故SKIPIF1<0的最大值是SKIPIF1<0.(2)設(shè)直線SKIPIF1<0,直線SKIPIF1<0方程與橢圓SKIPIF1<0聯(lián)立,可得SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,因?yàn)橹本€SKIPIF1<0與直線SKIPIF1<0交于SKIPIF1<0,則SKIPIF1<0,同理可得,SKIPIF1<0.則SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),故SKIPIF1<0的最小值為SKIPIF1<0.【點(diǎn)睛】本題主要考查最值的計(jì)算,第一問利用橢圓的參數(shù)方程以及二次函數(shù)的性質(zhì)較好解決,第二問思路簡(jiǎn)單,運(yùn)算量較大,求最值的過程中還使用到柯西不等式求最值,對(duì)學(xué)生的綜合能力要求較高,屬于較難題.2.(2021·北京·統(tǒng)考高考真題)已知橢圓SKIPIF1<0一個(gè)頂點(diǎn)SKIPIF1<0,以橢圓SKIPIF1<0的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形面積為SKIPIF1<0.(1)求橢圓E的方程;(2)過點(diǎn)P(0,-3)的直線l斜率為k的直線與橢圓E交于不同的兩點(diǎn)B,C,直線AB,AC分別與直線交y=-3交于點(diǎn)M,N,當(dāng)|PM|+|PN|≤15時(shí),求k的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)根據(jù)橢圓所過的點(diǎn)及四個(gè)頂點(diǎn)圍成的四邊形的面積可求SKIPIF1<0,從而可求橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)SKIPIF1<0,求出直線SKIPIF1<0的方程后可得SKIPIF1<0的橫坐標(biāo),從而可得SKIPIF1<0,聯(lián)立直線SKIPIF1<0的方程和橢圓的方程,結(jié)合韋達(dá)定理化簡(jiǎn)SKIPIF1<0,從而可求SKIPIF1<0的范圍,注意判別式的要求.【詳解】(1)因?yàn)闄E圓過SKIPIF1<0,故SKIPIF1<0,因?yàn)樗膫€(gè)頂點(diǎn)圍成的四邊形的面積為SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,故橢圓的標(biāo)準(zhǔn)方程為:SKIPIF1<0.(2)設(shè)SKIPIF1<0,因?yàn)橹本€SKIPIF1<0的斜率存在,故SKIPIF1<0,故直線SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,同理SKIPIF1<0.直線SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.又SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0又SKIPIF1<0SKIPIF1<0故SKIPIF1<0即SKIPIF1<0,綜上,SKIPIF1<0或SKIPIF1<0.3.(2021·全國(guó)·高考真題)拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn)O.焦點(diǎn)在x軸上,直線l:SKIPIF1<0交C于P,Q兩點(diǎn),且SKIPIF1<0.已知點(diǎn)SKIPIF1<0,且SKIPIF1<0與l相切.(1)求C,SKIPIF1<0的方程;(2)設(shè)SKIPIF1<0是C上的三個(gè)點(diǎn),直線SKIPIF1<0,SKIPIF1<0均與SKIPIF1<0相切.判斷直線SKIPIF1<0與SKIPIF1<0的位置關(guān)系,并說明理由.【答案】(1)拋物線SKIPIF1<0,SKIPIF1<0方程為SKIPIF1<0;(2)相切,理由見解析【分析】(1)根據(jù)已知拋物線與SKIPIF1<0相交,可得出拋物線開口向右,設(shè)出標(biāo)準(zhǔn)方程,再利用對(duì)稱性設(shè)出SKIPIF1<0坐標(biāo),由SKIPIF1<0,即可求出SKIPIF1<0;由圓SKIPIF1<0與直線SKIPIF1<0相切,求出半徑,即可得出結(jié)論;(2)方法一:先考慮SKIPIF1<0斜率不存在,根據(jù)對(duì)稱性,即可得出結(jié)論;若SKIPIF1<0斜率存在,由SKIPIF1<0三點(diǎn)在拋物線上,將直線SKIPIF1<0斜率分別用縱坐標(biāo)表示,再由SKIPIF1<0與圓SKIPIF1<0相切,得出SKIPIF1<0與SKIPIF1<0的關(guān)系,最后求出SKIPIF1<0點(diǎn)到直線SKIPIF1<0的距離,即可得出結(jié)論.【詳解】(1)依題意設(shè)拋物線SKIPIF1<0,SKIPIF1<0,所以拋物線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0與SKIPIF1<0相切,所以半徑為SKIPIF1<0,所以SKIPIF1<0的方程為SKIPIF1<0;(2)[方法一]:設(shè)SKIPIF1<0若SKIPIF1<0斜率不存在,則SKIPIF1<0方程為SKIPIF1<0或SKIPIF1<0,若SKIPIF1<0方程為SKIPIF1<0,根據(jù)對(duì)稱性不妨設(shè)SKIPIF1<0,則過SKIPIF1<0與圓SKIPIF1<0相切的另一條直線方程為SKIPIF1<0,此時(shí)該直線與拋物線只有一個(gè)交點(diǎn),即不存在SKIPIF1<0,不合題意;若SKIPIF1<0方程為SKIPIF1<0,根據(jù)對(duì)稱性不妨設(shè)SKIPIF1<0則過SKIPIF1<0與圓SKIPIF1<0相切的直線SKIPIF1<0為SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,此時(shí)直線SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱,所以直線SKIPIF1<0與圓SKIPIF1<0相切;若直線SKIPIF1<0斜率均存在,則SKIPIF1<0,所以直線SKIPIF1<0方程為SKIPIF1<0,整理得SKIPIF1<0,同理直線SKIPIF1<0的方程為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0與圓SKIPIF1<0相切,SKIPIF1<0整理得SKIPIF1<0,SKIPIF1<0與圓SKIPIF1<0相切,同理SKIPIF1<0所以SKIPIF1<0為方程SKIPIF1<0的兩根,SKIPIF1<0,SKIPIF1<0到直線SKIPIF1<0的距離為:SKIPIF1<0SKIPIF1<0,所以直線SKIPIF1<0與圓SKIPIF1<0相切;綜上若直線SKIPIF1<0與圓SKIPIF1<0相切,則直線SKIPIF1<0與圓SKIPIF1<0相切.[方法二]【最優(yōu)解】:設(shè)SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),同解法1.當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.由直線SKIPIF1<0與SKIPIF1<0相切得SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,同理,由直線SKIPIF1<0與SKIPIF1<0相切得SKIPIF1<0.因?yàn)榉匠蘏KIPIF1<0同時(shí)經(jīng)過點(diǎn)SKIPIF1<0,所以SKIPIF1<0的直線方程為SKIPIF1<0,點(diǎn)M到直線SKIPIF1<0距離為SKIPIF1<0.所以直線SKIPIF1<0與SKIPIF1<0相切.綜上所述,若直線SKIPIF1<0與SKIPIF1<0相切,則直線SKIPIF1<0與SKIPIF1<0相切.【整體點(diǎn)評(píng)】第二問關(guān)鍵點(diǎn):過拋物線上的兩點(diǎn)直線斜率只需用其縱坐標(biāo)(或橫坐標(biāo))表示,將問題轉(zhuǎn)化為只與縱坐標(biāo)(或橫坐標(biāo))有關(guān);法一是要充分利用SKIPIF1<0的對(duì)稱性,抽象出SKIPIF1<0與SKIPIF1<0關(guān)系,把SKIPIF1<0的關(guān)系轉(zhuǎn)化為用SKIPIF1<0表示,法二是利用相切等條件得到SKIPIF1<0的直線方程為SKIPIF1<0,利用點(diǎn)到直線距離進(jìn)行證明,方法二更為簡(jiǎn)單,開拓學(xué)生思路總結(jié)規(guī)律預(yù)測(cè)考向(一)規(guī)律與預(yù)測(cè)縱觀近幾年的高考試題,高考對(duì)圓錐曲線的考查,選擇題、填空題、解答題三種題型均有,主要考查以下幾個(gè)方面:一是考查橢圓、雙曲線、拋物線的定義,與橢圓的焦點(diǎn)三角形結(jié)合,解決橢圓、三角形等相關(guān)問題;二是考查圓錐曲線的標(biāo)準(zhǔn)方程,結(jié)合基本量之間的關(guān)系,利用待定系數(shù)法求解;三是考查圓錐曲線的幾何性質(zhì),小題較多地考查拋物線、雙曲線的幾何性質(zhì);四是考查直線與圓錐曲線(橢圓、拋物線較多)位置關(guān)系問題,綜合性較強(qiáng),往往與向量結(jié)合,涉及方程組聯(lián)立,根的判別式、根與系數(shù)的關(guān)系、弦長(zhǎng)問題、不等式等.近幾年,小題多用于考查拋物線、雙曲線的定義、標(biāo)準(zhǔn)方程、幾何性質(zhì)等,命題角度呈現(xiàn)較強(qiáng)的靈活性;解答題主要考查直線與橢圓的位置關(guān)系,涉及三角形面積、參數(shù)范圍、最值、定值、定點(diǎn)、定直線等問題,命題方向多變,難度基本穩(wěn)定.近兩年,直線與與雙曲線的位置關(guān)系的主觀題連續(xù)出現(xiàn)?。ǘ┍緦n}考向展示考點(diǎn)突破典例分析考向一范圍、最值問題【核心知識(shí)】1.幾何法:通過利用曲線的定義、幾何性質(zhì)以及平面幾何中的定理、性質(zhì)等進(jìn)行求解.2.代數(shù)法:把要求最值的幾何量或代數(shù)表達(dá)式表示為某個(gè)(些)參數(shù)的函數(shù)解析式,然后利用函數(shù)方法、不等式方法等進(jìn)行求解.或合理構(gòu)建函數(shù)關(guān)系式后,用換元法,求導(dǎo)法,配方法等求最值.【典例分析】典例1.(2021·全國(guó)·統(tǒng)考高考真題)已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,且SKIPIF1<0與圓SKIPIF1<0上點(diǎn)的距離的最小值為SKIPIF1<0.(1)求SKIPIF1<0;(2)若點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0是SKIPIF1<0的兩條切線,SKIPIF1<0是切點(diǎn),求SKIPIF1<0面積的最大值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)根據(jù)圓的幾何性質(zhì)可得出關(guān)于SKIPIF1<0的等式,即可解出SKIPIF1<0的值;(2)設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,利用導(dǎo)數(shù)求出直線SKIPIF1<0、SKIPIF1<0,進(jìn)一步可求得直線SKIPIF1<0的方程,將直線SKIPIF1<0的方程與拋物線的方程聯(lián)立,求出SKIPIF1<0以及點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離,利用三角形的面積公式結(jié)合二次函數(shù)的基本性質(zhì)可求得SKIPIF1<0面積的最大值.【詳解】(1)[方法一]:利用二次函數(shù)性質(zhì)求最小值由題意知,SKIPIF1<0,設(shè)圓M上的點(diǎn)SKIPIF1<0,則SKIPIF1<0.所以SKIPIF1<0.從而有SKIPIF1<0SKIPIF1<0.因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.又SKIPIF1<0,解之得SKIPIF1<0,因此SKIPIF1<0.[方法二]【最優(yōu)解】:利用圓的幾何意義求最小值拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0與圓SKIPIF1<0上點(diǎn)的距離的最小值為SKIPIF1<0,解得SKIPIF1<0;(2)[方法一]:切點(diǎn)弦方程+韋達(dá)定義判別式求弦長(zhǎng)求面積法拋物線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,對(duì)該函數(shù)求導(dǎo)得SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,同理可知,直線SKIPIF1<0的方程為SKIPIF1<0,由于點(diǎn)SKIPIF1<0為這兩條直線的公共點(diǎn),則SKIPIF1<0,所以,點(diǎn)A、SKIPIF1<0的坐標(biāo)滿足方程SKIPIF1<0,所以,直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,可得SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,由已知可得SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的面積取最大值SKIPIF1<0.[方法二]【最優(yōu)解】:切點(diǎn)弦法+分割轉(zhuǎn)化求面積+三角換元求最值同方法一得到SKIPIF1<0.過P作y軸的平行線交SKIPIF1<0于Q,則SKIPIF1<0.SKIPIF1<0.P點(diǎn)在圓M上,則SKIPIF1<0SKIPIF1<0.故當(dāng)SKIPIF1<0時(shí)SKIPIF1<0的面積最大,最大值為SKIPIF1<0.[方法三]:直接設(shè)直線AB方程法設(shè)切點(diǎn)A,B的坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,聯(lián)立SKIPIF1<0和拋物線C的方程得SKIPIF1<0整理得SKIPIF1<0.判別式SKIPIF1<0,即SKIPIF1<0,且SKIPIF1<0.拋物線C的方程為SKIPIF1<0,即SKIPIF1<0,有SKIPIF1<0.則SKIPIF1<0,整理得SKIPIF1<0,同理可得SKIPIF1<0.聯(lián)立方程SKIPIF1<0可得點(diǎn)P的坐標(biāo)為SKIPIF1<0,即SKIPIF1<0.將點(diǎn)P的坐標(biāo)代入圓M的方程,得SKIPIF1<0,整理得SKIPIF1<0.由弦長(zhǎng)公式得SKIPIF1<0SKIPIF1<0.點(diǎn)P到直線SKIPIF1<0的距離為SKIPIF1<0.所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,即SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.【整體點(diǎn)評(píng)】(1)方法一利用兩點(diǎn)間距離公式求得SKIPIF1<0關(guān)于圓M上的點(diǎn)SKIPIF1<0的坐標(biāo)的表達(dá)式,進(jìn)一步轉(zhuǎn)化為關(guān)于SKIPIF1<0的表達(dá)式,利用二次函數(shù)的性質(zhì)得到最小值,進(jìn)而求得SKIPIF1<0的值;方法二,利用圓的性質(zhì),SKIPIF1<0與圓SKIPIF1<0上點(diǎn)的距離的最小值,簡(jiǎn)潔明快,為最優(yōu)解;(2)方法一設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,利用導(dǎo)數(shù)求得兩切線方程,由切點(diǎn)弦方程思想得到直線SKIPIF1<0的坐標(biāo)滿足方程SKIPIF1<0,然手與拋物線方程聯(lián)立,由韋達(dá)定理可得SKIPIF1<0,SKIPIF1<0,利用弦長(zhǎng)公式求得SKIPIF1<0的長(zhǎng),進(jìn)而得到面積關(guān)于SKIPIF1<0坐標(biāo)的表達(dá)式,利用圓的方程轉(zhuǎn)化得到關(guān)于SKIPIF1<0的二次函數(shù)最值問題;方法二,同方法一得到SKIPIF1<0,SKIPIF1<0,過P作y軸的平行線交SKIPIF1<0于Q,則SKIPIF1<0.由SKIPIF1<0求得面積關(guān)于SKIPIF1<0坐標(biāo)的表達(dá)式,并利用三角函數(shù)換元求得面積最大值,方法靈活,計(jì)算簡(jiǎn)潔,為最優(yōu)解;方法三直接設(shè)直線SKIPIF1<0,聯(lián)立直線SKIPIF1<0和拋物線方程,利用韋達(dá)定理判別式得到SKIPIF1<0,且SKIPIF1<0.利用點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,求得SKIPIF1<0的關(guān)系,然后利用導(dǎo)數(shù)求得兩切線方程,解方程組求得P的坐標(biāo)SKIPIF1<0,進(jìn)而利用弦長(zhǎng)公式和點(diǎn)到直線距離公式求得面積關(guān)于SKIPIF1<0的函數(shù)表達(dá)式,然后利用二次函數(shù)的性質(zhì)求得最大值;典例2.(2023春·廣東清遠(yuǎn)·高三校聯(lián)考階段練習(xí))已知雙曲線SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與雙曲線SKIPIF1<0的右支相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱的點(diǎn)為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(1)求雙曲線SKIPIF1<0的方程;(2)若SKIPIF1<0的外心為SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)設(shè)雙曲線的半焦距為SKIPIF1<0,由條件列關(guān)于SKIPIF1<0的方程,解方程求SKIPIF1<0可得雙曲線方程;(2)設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,利用設(shè)而不求法求點(diǎn)SKIPIF1<0的坐標(biāo),利用SKIPIF1<0表示SKIPIF1<0,再求其范圍.【詳解】(1)設(shè)雙曲線的半焦距為SKIPIF1<0,因?yàn)殡p曲線SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,所以SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱,所以當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0可得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故雙曲線方程為SKIPIF1<0;(2)若直線SKIPIF1<0的斜率為0,則直線SKIPIF1<0與雙曲線右支只有一個(gè)交點(diǎn),與已知矛盾,所以可設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,消SKIPIF1<0,得SKIPIF1<0,方程SKIPIF1<0的判別式SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由已知SKIPIF1<0,所以SKIPIF1<0,所以線段SKIPIF1<0的中點(diǎn)坐標(biāo)為SKIPIF1<0,所以線段SKIPIF1<0的垂直平分線方程為SKIPIF1<0,又線段SKIPIF1<0的垂直平分線方程為SKIPIF1<0,所以點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0的取值范圍為SKIPIF1<0.【點(diǎn)睛】直線與雙曲線的綜合問題,一般利用設(shè)而不求法解決;其中范圍或最值問題,一般利用設(shè)而不求法求出變量的解析式,再結(jié)合函數(shù)方法求其范圍或最值.典例3.(2022秋·安徽阜陽(yáng)·高三安徽省臨泉第一中學(xué)??计谀┮阎獧E圓C:SKIPIF1<0的離心率為SKIPIF1<0,且過SKIPIF1<0(1)求C的方程.(2)若SKIPIF1<0為SKIPIF1<0上不與SKIPIF1<0重合的兩點(diǎn),SKIPIF1<0為原點(diǎn),且SKIPIF1<0,SKIPIF1<0,①求直線SKIPIF1<0的斜率;②與SKIPIF1<0平行的直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),求SKIPIF1<0面積的最大值.【答案】(1)SKIPIF1<0(2)①SKIPIF1<0;②SKIPIF1<0【分析】(1)根據(jù)已知條件列方程組求解即可;(2)①設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,可得點(diǎn)SKIPIF1<0的坐標(biāo),將點(diǎn)SKIPIF1<0的坐標(biāo)代入橢圓的方程,與已知條件結(jié)合即可得到結(jié)果;②由①知設(shè)SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立直線與曲線SKIPIF1<0的方程,根據(jù)弦長(zhǎng)公式求出SKIPIF1<0的長(zhǎng),根據(jù)點(diǎn)到直線的距離公式表示出SKIPIF1<0到直線SKIPIF1<0的距離,將SKIPIF1<0的面積用SKIPIF1<0表示,利用導(dǎo)數(shù)進(jìn)行求解即可.【詳解】(1)由題意可得SKIPIF1<0解得SKIPIF1<0,SKIPIF1<0.所以,SKIPIF1<0的方程為SKIPIF1<0.(2)①設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,又因?yàn)辄c(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,所以SKIPIF1<0,化簡(jiǎn)可得SKIPIF1<0,因?yàn)镾KIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0為SKIPIF1<0上不與SKIPIF1<0重合的兩點(diǎn),所以SKIPIF1<0,SKIPIF1<0,即直線SKIPIF1<0的斜率SKIPIF1<0.②設(shè)SKIPIF1<0的方程為SKIPIF1<0,由SKIPIF1<0,消去SKIPIF1<0,可得SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,所以SKIPIF1<0面積為SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0.令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0,SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0的最大值為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0面積的最大值為SKIPIF1<0.典例4.(2020·浙江·統(tǒng)考高考真題)如圖,已知橢圓SKIPIF1<0,拋物線SKIPIF1<0,點(diǎn)A是橢圓SKIPIF1<0與拋物線SKIPIF1<0的交點(diǎn),過點(diǎn)A的直線l交橢圓SKIPIF1<0于點(diǎn)B,交拋物線SKIPIF1<0于M(B,M不同于A).(Ⅰ)若SKIPIF1<0,求拋物線SKIPIF1<0的焦點(diǎn)坐標(biāo);(Ⅱ)若存在不過原點(diǎn)的直線l使M為線段AB的中點(diǎn),求p的最大值.【答案】(Ⅰ)SKIPIF1<0;(Ⅱ)SKIPIF1<0【分析】(Ⅰ)求出拋物線標(biāo)準(zhǔn)方程,從而可得答案;(Ⅱ)方法一使用韋達(dá)定理、中點(diǎn)公式和解方程法分別求得SKIPIF1<0關(guān)于SKIPIF1<0的表達(dá)式,得到關(guān)于SKIPIF1<0的方程,利用基本不等式消去參數(shù),得到關(guān)于SKIPIF1<0的不等式,求解得到SKIPIF1<0的最大值;方法二利用韋達(dá)定理和中點(diǎn)公式求得SKIPIF1<0的坐標(biāo)關(guān)于SKIPIF1<0的表達(dá)式,根據(jù)點(diǎn)SKIPIF1<0在橢圓上,得到關(guān)于SKIPIF1<0關(guān)于SKIPIF1<0的函數(shù)表達(dá)式,利用基本不等式和二次函數(shù)的性質(zhì)得解,運(yùn)算簡(jiǎn)潔,為最優(yōu)解;方法三利用點(diǎn)差法得到SKIPIF1<0.根據(jù)判別式大于零,得到不等式SKIPIF1<0,通過解方程組求得SKIPIF1<0,代入求解得到SKIPIF1<0的最大值;方法四利用拋物線的參數(shù)方程設(shè)出點(diǎn)SKIPIF1<0的參數(shù)坐標(biāo),利用斜率關(guān)系求得SKIPIF1<0的坐標(biāo)關(guān)于SKIPIF1<0的表達(dá)式.作換元SKIPIF1<0,利用點(diǎn)A在橢圓上,得到SKIPIF1<0,然后利用二次函數(shù)的性質(zhì)求得SKIPIF1<0的最大值【詳解】(Ⅰ)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的方程為SKIPIF1<0,故拋物線SKIPIF1<0的焦點(diǎn)坐標(biāo)為SKIPIF1<0;(Ⅱ)[方法一]:韋達(dá)定理基本不等式法設(shè)SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0在拋物線上,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0即SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0的最大值為SKIPIF1<0,此時(shí)SKIPIF1<0.[方法二]【最優(yōu)解】:設(shè)直線SKIPIF1<0,SKIPIF1<0.將直線SKIPIF1<0的方程代入橢圓SKIPIF1<0得:SKIPIF1<0,所以點(diǎn)SKIPIF1<0的縱坐標(biāo)為SKIPIF1<0.將直線SKIPIF1<0的方程代入拋物線SKIPIF1<0得:SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,因此SKIPIF1<0,由SKIPIF1<0解得SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取到最大值為SKIPIF1<0.[方法三]:點(diǎn)差和判別式法設(shè)SKIPIF1<0,其中SKIPIF1<0.因?yàn)镾KIPIF1<0所以SKIPIF1<0.整理得SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0.因?yàn)榇嬖赟KIPIF1<0,所以上述關(guān)于SKIPIF1<0的二次方程有解,即判別式SKIPIF1<0.

①由SKIPIF1<0得SKIPIF1<0.因此SKIPIF1<0,將此式代入①式解得SKIPIF1<0.當(dāng)且僅當(dāng)點(diǎn)M的坐標(biāo)為SKIPIF1<0時(shí),p的最大值為SKIPIF1<0.[方法四]:參數(shù)法設(shè)SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,點(diǎn)A坐標(biāo)代入橢圓方程中,得SKIPIF1<0.所以SKIPIF1<0,此時(shí)M坐標(biāo)為SKIPIF1<0.典例5.(2023春·云南·高三校聯(lián)考開學(xué)考試)在平面直角坐標(biāo)系SKIPIF1<0中,已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,且過點(diǎn)SKIPIF1<0.(1)求橢圓C的方程;(2)如圖所示,動(dòng)直線SKIPIF1<0交橢圓C于A,B兩點(diǎn),交y軸于點(diǎn)M.點(diǎn)N是M關(guān)于O的對(duì)稱點(diǎn),SKIPIF1<0的半徑為SKIPIF1<0.設(shè)D為SKIPIF1<0的中點(diǎn),SKIPIF1<0與SKIPIF1<0分別相切于點(diǎn)E,F(xiàn),求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)由離心率SKIPIF1<0,可得SKIPIF1<0,再根據(jù)橢圓SKIPIF1<0過點(diǎn)SKIPIF1<0,代入橢圓方程,進(jìn)而可求出SKIPIF1<0;(2)設(shè)SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0,可得到關(guān)于SKIPIF1<0的一元二次方程,結(jié)合韋達(dá)定理,可求得點(diǎn)SKIPIF1<0的坐標(biāo),進(jìn)而得出SKIPIF1<0的表達(dá)式,整理得SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,進(jìn)而可求得SKIPIF1<0,設(shè)SKIPIF1<0,可知SKIPIF1<0,即可得到SKIPIF1<0的最小值,及SKIPIF1<0的最小值.【詳解】(1)∵橢圓SKIPIF1<0的離心率為SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,又橢圓C過點(diǎn)SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,則橢圓C的方程為SKIPIF1<0.(2)設(shè)SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,且SKIPIF1<0,因此SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)等號(hào)成立,此時(shí)SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0且SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0,從而SKIPIF1<0的最小值為SKIPIF1<0,此時(shí)直線SKIPIF1<0的斜率是0.綜上所述:當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0取到最小值SKIPIF1<0.【點(diǎn)睛】思路點(diǎn)睛:解決直線與橢圓的綜合問題時(shí),要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個(gè)條件,明確確定直線、橢圓的條件;(2)強(qiáng)化有關(guān)直線與橢圓聯(lián)立得出一元二次方程后的運(yùn)算能力,重視根與系數(shù)關(guān)系之間的關(guān)系、弦長(zhǎng)、斜率、面積等問題.【規(guī)律方法】1.最值問題的常見方法(1)利用判別式來構(gòu)造不等關(guān)系.(2)利用已知參數(shù)的范圍,在兩個(gè)參數(shù)之間建立函數(shù)關(guān)系.(3)利用隱含或已知的不等關(guān)系建立不等式.(4)利用基本不等式.2.解決圓錐曲線中的取值范圍問題應(yīng)考慮的五個(gè)方面(1)利用圓錐曲線的幾何性質(zhì)或判別式構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍.(2)利用已知參數(shù)的范圍,求新參數(shù)的范圍,解這類問題的核心是建立兩個(gè)參數(shù)之間的等量關(guān)系.(3)利用隱含的不等關(guān)系建立不等式,從而求出參數(shù)的取值范圍.(4)利用已知的不等關(guān)系構(gòu)造不等式,從而求出參數(shù)的取值范圍.(5)利用求函數(shù)的值域的方法將待求量表示為其他變量的函數(shù),求其值域,從而確定參數(shù)的取值范圍.考向二探索性問題【核心知識(shí)】1.圓錐曲線中探索問題的求解策略(1)此類問題一般分為探究條件、探究結(jié)論兩種.若探究條件,則可先假設(shè)條件成立,再驗(yàn)證結(jié)論是否成立,成立則存在,不成立則不存在;若探究結(jié)論,則應(yīng)先求出結(jié)論的表達(dá)式,再針對(duì)其表達(dá)式進(jìn)行討論,往往涉及對(duì)參數(shù)的討論.(2)求解步驟:假設(shè)滿足條件的元素(點(diǎn)、直線、曲線或參數(shù))存在,用待定系數(shù)法設(shè)出,列出關(guān)于待定系數(shù)的方程組,若方程組有實(shí)數(shù)解,則元素(點(diǎn)、直線、曲線或參數(shù))存在,否則,元素(點(diǎn)、直線、曲線或參數(shù))不存在.2.存在性問題常用方法:法1:特值探路;法2:假設(shè)存在..

【典例分析】典例6.(2022·浙江金華·高三浙江金華第一中學(xué)??几?jìng)賽)在平面直角坐標(biāo)系中,已知雙曲線SKIPIF1<0.過原點(diǎn)SKIPIF1<0作兩條互相垂直的直線SKIPIF1<0分別交SKIPIF1<0于SKIPIF1<0兩點(diǎn)和SKIPIF1<0兩點(diǎn),且SKIPIF1<0,SKIPIF1<0在SKIPIF1<0軸同側(cè).(1)求四邊形SKIPIF1<0面積的取值范圍;(2)設(shè)直線SKIPIF1<0與SKIPIF1<0的兩漸近線分別交于SKIPIF1<0兩點(diǎn),是否存在直線SKIPIF1<0使得SKIPIF1<0為線段SKIPIF1<0的三等分點(diǎn)?若存在,求出直線SKIPIF1<0的方程;若不存在,請(qǐng)說明理由.【答案】(1)SKIPIF1<0(2)不存在,理由見解析【分析】(1)設(shè)SKIPIF1<0,聯(lián)立直線方程和雙曲線方程后可求SKIPIF1<0,從而可求SKIPIF1<0及SKIPIF1<0的取值范圍,利用面積公式可求四邊形SKIPIF1<0的面積SKIPIF1<0,結(jié)合基本不等式可求面積的范圍.(2)設(shè)SKIPIF1<0,其中SKIPIF1<0,由三等分點(diǎn)在雙曲線上可得SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,代數(shù)變形后可得矛盾,從而可判斷直線SKIPIF1<0不存在.【詳解】(1)由題設(shè)可知直線SKIPIF1<0的斜率均存在且均不為零.設(shè)SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,其中SKIPIF1<0.同理SKIPIF1<0,其中SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0,同理SKIPIF1<0故四邊形SKIPIF1<0的面積SKIPIF1<0滿足:SKIPIF1<0SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0;故SKIPIF1<0在SKIPIF1<0上為增函數(shù),在SKIPIF1<0上為減函數(shù).因此,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.故四邊形SKIPIF1<0面積的取值范圍為SKIPIF1<0.(2)先考慮SKIPIF1<0在SKIPIF1<0軸上方,且SKIPIF1<0在第一象限,SKIPIF1<0在第二象限.設(shè)SKIPIF1<0,其中SKIPIF1<0,若SKIPIF1<0為線段SKIPIF1<0的三等分點(diǎn),則SKIPIF1<0可得:SKIPIF1<0,故SKIPIF1<0,同理SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0而SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,整理得到SKIPIF1<0,無解.故滿足條件的直線SKIPIF1<0不存在,由雙曲線的對(duì)稱性可得直線SKIPIF1<0不存在.典例7.(2020·山東·統(tǒng)考高考真題)已知橢圓C:SKIPIF1<0的離心率為SKIPIF1<0,且過點(diǎn)SKIPIF1<0.(1)求SKIPIF1<0的方程:(2)點(diǎn)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為垂足.證明:存在定點(diǎn)SKIPIF1<0,使得SKIPIF1<0為定值.【答案】(1)SKIPIF1<0;(2)詳見解析.【分析】(1)由題意得到關(guān)于SKIPIF1<0的方程組,求解方程組即可確定橢圓方程.(2)方法一:設(shè)出點(diǎn)SKIPIF1<0,SKIPIF1<0的坐標(biāo),在斜率存在時(shí)設(shè)方程為SKIPIF1<0,聯(lián)立直線方程與橢圓方程,根據(jù)已知條件,已得到SKIPIF1<0的關(guān)系,進(jìn)而得直線SKIPIF1<0恒過定點(diǎn),在直線斜率不存在時(shí)要單獨(dú)驗(yàn)證,然后結(jié)合直角三角形的性質(zhì)即可確定滿足題意的點(diǎn)SKIPIF1<0的位置.【詳解】(1)由題意可得:SKIPIF1<0,解得:SKIPIF1<0,故橢圓方程為:SKIPIF1<0.(2)[方法一]:通性通法設(shè)點(diǎn)SKIPIF1<0,若直線SKIPIF1<0斜率存在時(shí),設(shè)直線SKIPIF1<0的方程為:SKIPIF1<0,代入橢圓方程消去SKIPIF1<0并整理得:SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,根據(jù)SKIPIF1<0,代入整理可得:SKIPIF1<0,

所以SKIPIF1<0,整理化簡(jiǎn)得SKIPIF1<0,因?yàn)镾KIPIF1<0不在直線SKIPIF1<0上,所以SKIPIF1<0,故SKIPIF1<0,于是SKIPIF1<0的方程為SKIPIF1<0SKIPIF1<0,所以直線過定點(diǎn)直線過定點(diǎn)SKIPIF1<0.當(dāng)直線SKIPIF1<0的斜率不存在時(shí),可得SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,得SKIPIF1<0,結(jié)合SKIPIF1<0可得:SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(舍).此時(shí)直線SKIPIF1<0過點(diǎn)SKIPIF1<0.令SKIPIF1<0為SKIPIF1<0的中點(diǎn),即SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0不重合,則由題設(shè)知SKIPIF1<0是SKIPIF1<0的斜邊,故SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0重合,則SKIPIF1<0,故存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0為定值.[方法二]【最優(yōu)解】:平移坐標(biāo)系將原坐標(biāo)系平移,原來的O點(diǎn)平移至點(diǎn)A處,則在新的坐標(biāo)系下橢圓的方程為SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0.將直線SKIPIF1<0方程與橢圓方程聯(lián)立得SKIPIF1<0,即SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,即SKIPIF1<0.設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0則SKIPIF1<0SKIPIF1<0,即SKIPIF1<0.代入直線SKIPIF1<0方程中得SKIPIF1<0.則在新坐標(biāo)系下直線SKIPIF1<0過定點(diǎn)SKIPIF1<0,則在原坐標(biāo)系下直線SKIPIF1<0過定點(diǎn)SKIPIF1<0.又SKIPIF1<0,D在以SKIPIF1<0為直徑的圓上.SKIPIF1<0的中點(diǎn)SKIPIF1<0即為圓心Q.經(jīng)檢驗(yàn),直線SKIPIF1<0垂直于x軸時(shí)也成立.故存在SKIPIF1<0,使得SKIPIF1<0.[方法三]:建立曲線系A(chǔ)點(diǎn)處的切線方程為SKIPIF1<0,即SKIPIF1<0.設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0.由題意得SKIPIF1<0.則過A,M,N三點(diǎn)的二次曲線系方程用橢圓及直線SKIPIF1<0可表示為SKIPIF1<0(其中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論