版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第一篇熱點(diǎn)、難點(diǎn)突破篇專(zhuān)題19解析幾何中的定值、定點(diǎn)和定線問(wèn)題(練)【對(duì)點(diǎn)演練】一、單選題1.(2022·吉林·東北師大附中??寄M預(yù)測(cè))過(guò)點(diǎn)SKIPIF1<0且與雙曲線SKIPIF1<0有且只有一個(gè)公共點(diǎn)的直線有(
)條.A.0 B.2 C.3 D.4【答案】D【分析】過(guò)點(diǎn)SKIPIF1<0且分別與漸近線平行的兩條直線與雙曲線有且僅有一個(gè)交點(diǎn);過(guò)點(diǎn)SKIPIF1<0且與雙曲線相切的直線與雙曲線有且僅有一個(gè)公共點(diǎn).【詳解】由雙曲線SKIPIF1<0得其漸近線方程為SKIPIF1<0.①過(guò)點(diǎn)SKIPIF1<0且分別與漸近線平行的兩條直線SKIPIF1<0與雙曲線有且僅有一個(gè)交點(diǎn);②設(shè)過(guò)點(diǎn)SKIPIF1<0且與雙曲線相切的直線為SKIPIF1<0,聯(lián)立SKIPIF1<0,化為SKIPIF1<0得到SKIPIF1<0,解得SKIPIF1<0.則切線SKIPIF1<0分別與雙曲線有且僅有一個(gè)公共點(diǎn).綜上可知:過(guò)點(diǎn)SKIPIF1<0且與雙曲線SKIPIF1<0僅有一個(gè)公共點(diǎn)的直線共有4條.故選:SKIPIF1<0.2.(2023秋·山東濰坊·高三統(tǒng)考期末)已知SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0是拋物線SKIPIF1<0上的動(dòng)點(diǎn),且SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0,下列各點(diǎn)中到點(diǎn)SKIPIF1<0的距離為定值的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)題意可設(shè)直線SKIPIF1<0的方程SKIPIF1<0,聯(lián)立拋物線方程再利用SKIPIF1<0,可得SKIPIF1<0,法一:可知H在圓上運(yùn)動(dòng)進(jìn)行判斷,法二再由SKIPIF1<0得出SKIPIF1<0的方程為SKIPIF1<0,解得SKIPIF1<0,代入選項(xiàng)逐一驗(yàn)證是否為定值即可得出答案.【詳解】法一:設(shè)直線SKIPIF1<0方程為SKIPIF1<0,SKIPIF1<0聯(lián)立直線和拋物線方程整理得SKIPIF1<0,所以SKIPIF1<0又SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0;則直線SKIPIF1<0SKIPIF1<0過(guò)定點(diǎn)D(4,0)因?yàn)镾KIPIF1<0,則點(diǎn)H在為直徑的圓上(其中圓心坐標(biāo)為OD中點(diǎn)(2,0)),故(2,0)到H的距離為定值故選:B法二:設(shè)直線SKIPIF1<0方程為SKIPIF1<0,SKIPIF1<0聯(lián)立直線和拋物線方程整理得SKIPIF1<0,所以SKIPIF1<0又SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0;又因?yàn)镾KIPIF1<0,所以SKIPIF1<0的方程為SKIPIF1<0,解得SKIPIF1<0對(duì)于A,SKIPIF1<0到點(diǎn)SKIPIF1<0的距離為SKIPIF1<0不是定值;對(duì)于B,SKIPIF1<0到點(diǎn)SKIPIF1<0的距離為SKIPIF1<0為定值;對(duì)于C,SKIPIF1<0到點(diǎn)SKIPIF1<0的距離為SKIPIF1<0不是定值;對(duì)于D,SKIPIF1<0到點(diǎn)SKIPIF1<0的距離為SKIPIF1<0不是定值.故選:B【點(diǎn)睛】方法點(diǎn)睛:定值問(wèn)題通常思路為設(shè)出直線方程,與圓錐曲線方程聯(lián)立,得到兩根之和,兩根之積,應(yīng)用設(shè)而不求的思想,進(jìn)行求解;注意考慮直線方程的斜率存在和不存在的情況.二、多選題3.(2023·全國(guó)·高三專(zhuān)題練習(xí))橢圓SKIPIF1<0的上下頂點(diǎn)分別SKIPIF1<0,焦點(diǎn)為SKIPIF1<0,SKIPIF1<0為橢圓上異于SKIPIF1<0的一動(dòng)點(diǎn),離心率為SKIPIF1<0,則(
)A.SKIPIF1<0的周長(zhǎng)為SKIPIF1<0B.離心率SKIPIF1<0越接近SKIPIF1<0,則橢圓SKIPIF1<0越扁平C.直線SKIPIF1<0的斜率之積為定值SKIPIF1<0D.存在點(diǎn)SKIPIF1<0使得SKIPIF1<0,則SKIPIF1<0【答案】ABD【分析】根據(jù)橢圓定義可知焦點(diǎn)三角形周長(zhǎng)為SKIPIF1<0,結(jié)合離心率轉(zhuǎn)化即可知A正確;根據(jù)橢圓離心率與橢圓形狀的關(guān)系可知B正確;設(shè)SKIPIF1<0,結(jié)合兩點(diǎn)連線斜率公式化簡(jiǎn)可得斜率之積,知C錯(cuò)誤;將問(wèn)題轉(zhuǎn)化為當(dāng)SKIPIF1<0為短軸端點(diǎn)時(shí),SKIPIF1<0,利用余弦定理可構(gòu)造齊次不等式求得SKIPIF1<0的范圍,知D正確.【詳解】對(duì)于A,由橢圓定義知:SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的周長(zhǎng)為SKIPIF1<0,A正確;對(duì)于B,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0越接近SKIPIF1<0時(shí),SKIPIF1<0的值越小,則橢圓越扁平,B正確;對(duì)于C,設(shè)SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,C錯(cuò)誤;對(duì)于D,由橢圓性質(zhì)知:當(dāng)SKIPIF1<0為短軸端點(diǎn)時(shí),SKIPIF1<0最大,SKIPIF1<0若存在點(diǎn)SKIPIF1<0使得SKIPIF1<0,則當(dāng)SKIPIF1<0為短軸端點(diǎn)時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,D正確.故選;ABD.4.(2023·全國(guó)·模擬預(yù)測(cè))已知拋物線SKIPIF1<0,SKIPIF1<0為SKIPIF1<0軸正半軸上一點(diǎn),則(
)A.存在點(diǎn)SKIPIF1<0,使得過(guò)點(diǎn)SKIPIF1<0任意作弦SKIPIF1<0,總有SKIPIF1<0為定值B.不存在點(diǎn)SKIPIF1<0,使得過(guò)點(diǎn)SKIPIF1<0任意作弦SKIPIF1<0,有SKIPIF1<0為定值C.存在點(diǎn)SKIPIF1<0,使得過(guò)點(diǎn)SKIPIF1<0任意作弦SKIPIF1<0,總有SKIPIF1<0為定值D.不存在點(diǎn)SKIPIF1<0,使得過(guò)點(diǎn)SKIPIF1<0任意作弦SKIPIF1<0,有SKIPIF1<0為定值【答案】AD【分析】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立直線與拋物線方程得SKIPIF1<0,由兩點(diǎn)間的距離公式可得SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),則有SKIPIF1<0SKIPIF1<0SKIPIF1<0,從而可判斷A正確,B錯(cuò)誤;進(jìn)而可得SKIPIF1<0SKIPIF1<0,可得此式不為定值,即可得故C錯(cuò)誤,D正確.【詳解】解:設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,則有SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0+SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0,即存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0為定值SKIPIF1<0,故A正確,B錯(cuò)誤;由題意可得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,如果SKIPIF1<0為定值,則必有SKIPIF1<0,而此方程組無(wú)解,所以SKIPIF1<0不為定值,故C錯(cuò)誤,D正確.故選:AD.三、解答題5.(2022秋·江西萍鄉(xiāng)·高三統(tǒng)考期末)已知橢圓E的中心在原點(diǎn),周長(zhǎng)為8的SKIPIF1<0的頂點(diǎn),SKIPIF1<0為橢圓E的左焦點(diǎn),頂點(diǎn)B,C在E上,且邊BC過(guò)E的右焦點(diǎn).(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)橢圓E的上、下頂點(diǎn)分別為M,N,點(diǎn)SKIPIF1<0若直線PM,PN與橢圓E的另一個(gè)交點(diǎn)分別為點(diǎn)S,T,證明:直線ST過(guò)定點(diǎn),并求該定點(diǎn)坐標(biāo).【答案】(1)SKIPIF1<0(2)證明見(jiàn)解析,SKIPIF1<0【分析】(1)根據(jù)橢圓定義直接求解即可;(2)求出SKIPIF1<0的坐標(biāo),寫(xiě)出直線SKIPIF1<0方程即可求出定點(diǎn)坐標(biāo).【詳解】(1)由題意知,橢圓E的焦點(diǎn)在x軸上,所以設(shè)橢圓方程為SKIPIF1<0,焦距為SKIPIF1<0,所以SKIPIF1<0周長(zhǎng)為SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0因?yàn)樽蠼裹c(diǎn)SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以橢圓E的標(biāo)準(zhǔn)方程為SKIPIF1<0(2)由題意知,SKIPIF1<0,直線SKIPIF1<0斜率均存在,所以直線SKIPIF1<0,與橢圓方程聯(lián)立得SKIPIF1<0,SKIPIF1<0對(duì)SKIPIF1<0恒成立,則SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,同理SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以直線SKIPIF1<0方程為:SKIPIF1<0,所以直線SKIPIF1<0過(guò)定點(diǎn),定點(diǎn)坐標(biāo)為SKIPIF1<06.(2022秋·四川成都·高三成都實(shí)外??茧A段練習(xí))已知橢圓SKIPIF1<0:SKIPIF1<0,若點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0中恰有三點(diǎn)在橢圓SKIPIF1<0上.(1)求SKIPIF1<0的方程;(2)點(diǎn)SKIPIF1<0是SKIPIF1<0的左焦點(diǎn),過(guò)點(diǎn)SKIPIF1<0且與SKIPIF1<0軸不重合的直線SKIPIF1<0與SKIPIF1<0交于不同的兩點(diǎn)SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0內(nèi)切圓的圓心在定直線上.【答案】(1)SKIPIF1<0;(2)證明見(jiàn)解析.【分析】(1)根據(jù)對(duì)稱(chēng)性SKIPIF1<0,SKIPIF1<0定在橢圓上,然后分別討論SKIPIF1<0,SKIPIF1<0在橢圓上的情況,從而可求出橢圓方程,(2)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0:SKIPIF1<0,將問(wèn)題轉(zhuǎn)化為證明SKIPIF1<0的角平分線為定直線,只要證SKIPIF1<0,將直線方程代入橢圓方程消去SKIPIF1<0,利用根與系數(shù)的關(guān)系,代入上式化簡(jiǎn)即可得結(jié)論.【詳解】(1)根據(jù)對(duì)稱(chēng)性SKIPIF1<0,SKIPIF1<0定在橢圓上,若SKIPIF1<0也在橢圓上,則SKIPIF1<0,方程組無(wú)解,所以SKIPIF1<0為橢圓上第三個(gè)點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0,所以橢圓SKIPIF1<0的方程為:SKIPIF1<0;(2)由(1)得SKIPIF1<0:SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0:SKIPIF1<0.要證明SKIPIF1<0內(nèi)切圓的圓心在定直線上,由對(duì)稱(chēng)性和內(nèi)心的定義,即證明SKIPIF1<0的角平分線為定直線,即證SKIPIF1<0,即SKIPIF1<0,即證SKIPIF1<0,只要證SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0成立,即SKIPIF1<0得證,即SKIPIF1<0內(nèi)切圓的圓心在定直線SKIPIF1<0上.7.(2022秋·山東青島·高三統(tǒng)考期末)已知SKIPIF1<0為坐標(biāo)原點(diǎn),動(dòng)直線SKIPIF1<0與雙曲線SKIPIF1<0的漸近線交于A,B兩點(diǎn),與橢圓SKIPIF1<0交于E,F(xiàn)兩點(diǎn).當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(1)求雙曲線SKIPIF1<0的方程;(2)若動(dòng)直線SKIPIF1<0與SKIPIF1<0相切,證明:SKIPIF1<0的面積為定值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0的面積為定值SKIPIF1<0,證明見(jiàn)解析【分析】(1)設(shè)SKIPIF1<0,由題意有SKIPIF1<0,直線SKIPIF1<0與雙曲線的漸近線聯(lián)立方程組,求得SKIPIF1<0,直線SKIPIF1<0與橢圓聯(lián)立方程組,利用韋達(dá)定理求得SKIPIF1<0,根據(jù)方程解出SKIPIF1<0,得雙曲線SKIPIF1<0的方程.(2)根據(jù)(1)中解得的SKIPIF1<0兩點(diǎn)坐標(biāo),表示出SKIPIF1<0的面積,由直線SKIPIF1<0與SKIPIF1<0相切,聯(lián)立方程組消元后判別式為0,化簡(jiǎn)后得定值.【詳解】(1)設(shè)SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0;同理可得SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0即SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,所以雙曲線SKIPIF1<0的方程為SKIPIF1<0.(2)雙曲線的漸近線方程為SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,因?yàn)橹本€SKIPIF1<0與雙曲線SKIPIF1<0相切,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0為定值.【點(diǎn)睛】思路點(diǎn)睛:1.雙曲線SKIPIF1<0的漸近線方程為SKIPIF1<0,而雙曲線SKIPIF1<0的漸近線方程為SKIPIF1<0(即SKIPIF1<0),應(yīng)注意其區(qū)別與聯(lián)系.2.解答直線與橢圓的題目時(shí),時(shí)常把兩個(gè)曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系.強(qiáng)化有關(guān)直線與橢圓聯(lián)立得出一元二次方程后的運(yùn)算能力,重視根與系數(shù)之間的關(guān)系、弦長(zhǎng)、斜率、三角形的面積等問(wèn)題.8.(2023秋·浙江麗水·高三浙江省麗水中學(xué)校聯(lián)考期末)已知SKIPIF1<0為雙曲線SKIPIF1<0左右頂點(diǎn),焦點(diǎn)到漸近線的距離為SKIPIF1<0,直線SKIPIF1<0上一點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0連線與雙曲線右支交于另一點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0連線與雙曲線右支交于另一點(diǎn)D.(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)直線SKIPIF1<0是否經(jīng)過(guò)定點(diǎn)?若是,求出該定點(diǎn).【答案】(1)SKIPIF1<0;(2)經(jīng)過(guò)定點(diǎn),定點(diǎn)坐標(biāo)為SKIPIF1<0.【分析】(1)由題意即可得到答案(2)設(shè)出SKIPIF1<0,直線SKIPIF1<0,聯(lián)立直線與雙曲線方程得到關(guān)于SKIPIF1<0的韋達(dá)定理,由SKIPIF1<0三點(diǎn)共線得SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,得SKIPIF1<0,化簡(jiǎn)得到SKIPIF1<0,即可得到答案.【詳解】(1)依題可知SKIPIF1<0,雙曲線的漸近線方程為SKIPIF1<0,所以焦點(diǎn)到漸近線的距離為SKIPIF1<0,即雙曲線方程為SKIPIF1<0.(2)設(shè)SKIPIF1<0,直線SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0又SKIPIF1<0三點(diǎn)共線,則SKIPIF1<0①,SKIPIF1<0三點(diǎn)共線,則SKIPIF1<0②,聯(lián)立①②得SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,即SKIPIF1<0(*)將SKIPIF1<0,SKIPIF1<0,代入(*)式化簡(jiǎn)得SKIPIF1<0.所以SKIPIF1<0,即直線SKIPIF1<0是否經(jīng)過(guò)定點(diǎn)SKIPIF1<0.9.(2023秋·天津?yàn)I海新·高三大港一中??茧A段練習(xí))已知橢圓SKIPIF1<0的左、右頂點(diǎn)分別為SKIPIF1<0,右焦點(diǎn)為SKIPIF1<0,且SKIPIF1<0,以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)過(guò)點(diǎn)SKIPIF1<0且斜率為SKIPIF1<0的直線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0,(?。┰O(shè)點(diǎn)SKIPIF1<0在第一象限,且直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0.若SKIPIF1<0,求SKIPIF1<0的值;(ⅱ)連接SKIPIF1<0交圓SKIPIF1<0于點(diǎn)SKIPIF1<0,射線SKIPIF1<0上存在一點(diǎn)SKIPIF1<0,且SKIPIF1<0為定值,已知點(diǎn)SKIPIF1<0在定直線上,求SKIPIF1<0所在定直線方程.【答案】(1)SKIPIF1<0(2)(ⅰ)SKIPIF1<0或SKIPIF1<0;(ⅱ)SKIPIF1<0【分析】(1)由SKIPIF1<0,SKIPIF1<0可求得SKIPIF1<0,結(jié)合橢圓SKIPIF1<0關(guān)系可得SKIPIF1<0,由此可得橢圓方程;(2)(?。┰O(shè)SKIPIF1<0,與直線SKIPIF1<0聯(lián)立可得SKIPIF1<0坐標(biāo);與橢圓方程聯(lián)立,結(jié)合韋達(dá)定理可求得SKIPIF1<0點(diǎn)坐標(biāo);利用正弦定理化簡(jiǎn)已知等式可得SKIPIF1<0,即SKIPIF1<0,利用向量坐標(biāo)運(yùn)算可構(gòu)造方程求得SKIPIF1<0的值;(ⅱ)設(shè)SKIPIF1<0,由SKIPIF1<0點(diǎn)坐標(biāo)可求得SKIPIF1<0斜率,進(jìn)而得到SKIPIF1<0方程,與圓的方程聯(lián)立可得SKIPIF1<0點(diǎn)坐標(biāo);設(shè)SKIPIF1<0,利用向量數(shù)量積坐標(biāo)運(yùn)算表示出SKIPIF1<0,可知若SKIPIF1<0為定值,則SKIPIF1<0,知SKIPIF1<0;當(dāng)直線SKIPIF1<0斜率不存在時(shí),驗(yàn)證可知SKIPIF1<0滿(mǎn)足題意,由此可得定直線方程.【詳解】(1)SKIPIF1<0以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0橢圓SKIPIF1<0的方程為:SKIPIF1<0.(2)(?。┯桑?)得:SKIPIF1<0,可設(shè)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,即SKIPIF1<0;由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;在SKIPIF1<0中,由正弦定理得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0.(ⅱ)由題意知:圓SKIPIF1<0方程為:SKIPIF1<0;SKIPIF1<0,SKIPIF1<0;不妨令SKIPIF1<0位于第一象限,可設(shè)SKIPIF1<0,由(ⅰ)知:SKIPIF1<0,若直線SKIPIF1<0斜率存在,則SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為定值,此時(shí)SKIPIF1<0,則SKIPIF1<0,此時(shí)SKIPIF1<0在定直線SKIPIF1<0上;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0不為定值,不合題意;若直線SKIPIF1<0斜率不存在,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0,則直線SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0時(shí),SKIPIF1<0,滿(mǎn)足題意;綜上所述:點(diǎn)SKIPIF1<0在定直線SKIPIF1<0上.10.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知拋物線SKIPIF1<0的焦點(diǎn)為F,準(zhǔn)線為l,記準(zhǔn)線l與x軸的交點(diǎn)為A,過(guò)A作直線交拋物線C于SKIPIF1<0,SKIPIF1<0兩點(diǎn).(1)若SKIPIF1<0,求SKIPIF1<0的值;(2)若M是線段AN的中點(diǎn),求直線SKIPIF1<0的方程;(3)若P,Q是準(zhǔn)線l上關(guān)于x軸對(duì)稱(chēng)的兩點(diǎn),問(wèn)直線PM與QN的交點(diǎn)是否在一條定直線上?請(qǐng)說(shuō)明理由.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)在定直線上,理由見(jiàn)解析【分析】(1)根據(jù)焦半徑公式即可求出;(2)設(shè)直線MN的方程SKIPIF1<0,與拋物線聯(lián)立即可利用M是線段AN的中點(diǎn)求出m,從而求出直線SKIPIF1<0的方程;(3)設(shè)SKIPIF1<0,即可求出直線PM與QN的方程,聯(lián)立即可解出交點(diǎn),從而可以判斷交點(diǎn)在定直線上.【詳解】(1)根據(jù)題意,得因?yàn)閽佄锞€SKIPIF1<0,所以準(zhǔn)線為SKIPIF1<0,所以SKIPIF1<0;(2)由題意可知,直線SKIPIF1<0的斜率不為0,故設(shè)直線SKIPIF1<0的方程SKIPIF1<0,聯(lián)立SKIPIF1<0,消去SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,而M是線段AN的中點(diǎn),所以SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0,所以直線MN的方程為SKIPIF1<0,即SKIPIF1<0;(3)直線MN的方程SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,聯(lián)立消去SKIPIF1<0可得:SKIPIF1<0,即SKIPIF1<0,整理得:SKIPIF1<0,將SKIPIF1<0,SKIPIF1<0代入得SKIPIF1<0,故SKIPIF1<0,,所以直線PM與QN的交點(diǎn)在定直線SKIPIF1<0上.【沖刺提升】1.(2022秋·安徽合肥·高三統(tǒng)考期末)在平面直角坐標(biāo)系xOy中,SKIPIF1<0,SKIPIF1<0,直線AP,BP相交于點(diǎn)P,且它們的斜率之積是1,記點(diǎn)P的軌跡為C.(1)求證:曲線C是雙曲線的一部分:(2)設(shè)直線l與C相切,與其漸近線分別相交于M、N兩點(diǎn),求證:SKIPIF1<0的面積為定值【答案】(1)證明見(jiàn)解析(2)證明見(jiàn)解析【分析】(1)設(shè)P的坐標(biāo)SKIPIF1<0,SKIPIF1<0,根據(jù)斜率乘積為1列出方程,求出軌跡方程,判斷出曲線C是雙曲線的一部分;(2)設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,得到直線l的方程,與雙曲線方程聯(lián)立,由根的判別式等于0得到SKIPIF1<0,結(jié)合SKIPIF1<0得到SKIPIF1<0,解得SKIPIF1<0,求出直線l的方程為:SKIPIF1<0,與兩漸近線聯(lián)立求出SKIPIF1<0兩點(diǎn)坐標(biāo),求出SKIPIF1<0,結(jié)合以△OMN為直角三角形求出面積為定值4.【詳解】(1)設(shè)點(diǎn)P的坐標(biāo)為SKIPIF1<0,由已知得SKIPIF1<0,則直線AP,BP的斜率分別為:SKIPIF1<0由已知SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0.故曲線C的方程為:SKIPIF1<0,所以曲線C是除去頂點(diǎn)的雙曲線,是雙曲線的一部分;(2)設(shè)直線l與C相切的切點(diǎn)坐標(biāo)為SKIPIF1<0,斜率為k,則SKIPIF1<0,則直線l的方程為:SKIPIF1<0,與SKIPIF1<0聯(lián)立整理得:SKIPIF1<0①,雙曲線SKIPIF1<0漸近線為SKIPIF1<0,故SKIPIF1<0,且方程①有兩個(gè)相等的實(shí)數(shù)根,故SKIPIF1<0,化簡(jiǎn)得:SKIPIF1<0②,又SKIPIF1<0,即SKIPIF1<0③,由②③得,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故直線l的方程為:SKIPIF1<0.雙曲線C的兩條漸近線方程為SKIPIF1<0,所以△OMN為直角三角形.不妨設(shè)SKIPIF1<0與SKIPIF1<0交點(diǎn)為M,解得SKIPIF1<0,同理,設(shè)SKIPIF1<0與SKIPIF1<0交點(diǎn)為N,解得SKIPIF1<0,可求得:SKIPIF1<0,所以△OMN的面積SKIPIF1<0,故△OMN的面積為定值.【點(diǎn)睛】定值問(wèn)題常見(jiàn)方法:(1)從特殊入手,求出定值,再證明這個(gè)值與變量無(wú)關(guān);(2)直接推理計(jì)算,并在計(jì)算推理的過(guò)程中消去變量,從而得到定值.2.(2023·全國(guó)·校聯(lián)考模擬預(yù)測(cè))已知橢圓SKIPIF1<0的中心為坐標(biāo)原點(diǎn),對(duì)稱(chēng)軸為SKIPIF1<0軸、SKIPIF1<0軸,且過(guò)SKIPIF1<0、SKIPIF1<0兩點(diǎn).(1)求SKIPIF1<0的方程;(2)若SKIPIF1<0,過(guò)SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),求證:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見(jiàn)解析【分析】(1)設(shè)橢圓SKIPIF1<0的方程為SKIPIF1<0,將點(diǎn)SKIPIF1<0、SKIPIF1<0的坐標(biāo)代入橢圓SKIPIF1<0的方程,可得出關(guān)于SKIPIF1<0、SKIPIF1<0的方程組,解出這兩個(gè)未知數(shù)的值,即可得出橢圓SKIPIF1<0的方程;(2)分兩種情況討論:①直線SKIPIF1<0與SKIPIF1<0軸重合,直接驗(yàn)證結(jié)論成立;②直線SKIPIF1<0不與SKIPIF1<0軸重合,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0,將直線SKIPIF1<0的方程與橢圓SKIPIF1<0的方程聯(lián)立,列出韋達(dá)定理,計(jì)算得出SKIPIF1<0,可得出SKIPIF1<0軸平分SKIPIF1<0,利用角平分線的性質(zhì)可證得結(jié)論成立.綜合可得出結(jié)論.【詳解】(1)解:設(shè)橢圓SKIPIF1<0的方程為SKIPIF1<0,將點(diǎn)SKIPIF1<0、SKIPIF1<0的坐標(biāo)代入橢圓SKIPIF1<0的方程可得SKIPIF1<0,解得SKIPIF1<0,因此,橢圓SKIPIF1<0的方程為SKIPIF1<0.(2)證明:若直線SKIPIF1<0與SKIPIF1<0軸重合,則SKIPIF1<0、SKIPIF1<0為橢圓SKIPIF1<0長(zhǎng)軸的端點(diǎn),不妨設(shè)點(diǎn)SKIPIF1<0,則點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成立;若直線SKIPIF1<0不與SKIPIF1<0軸重合,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0,聯(lián)立SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以,SKIPIF1<0軸平分SKIPIF1<0,所以,SKIPIF1<0.綜上所述,SKIPIF1<0.3.(2023春·湖南長(zhǎng)沙·高三雅禮中學(xué)??茧A段練習(xí))如圖,橢圓SKIPIF1<0和圓SKIPIF1<0,已知圓SKIPIF1<0將橢圓SKIPIF1<0的長(zhǎng)軸三等分,橢圓SKIPIF1<0右焦點(diǎn)到右頂點(diǎn)的距離為SKIPIF1<0,橢圓SKIPIF1<0的下頂點(diǎn)為E,過(guò)坐標(biāo)原點(diǎn)O且與坐標(biāo)軸不重合的任意直線l與圓SKIPIF1<0相交于點(diǎn)A,B.(1)求橢圓SKIPIF1<0的方程;(2)若直線SKIPIF1<0分別與橢圓SKIPIF1<0相交于另一個(gè)交點(diǎn)為點(diǎn)P,M.求證:直線SKIPIF1<0經(jīng)過(guò)定點(diǎn).【答案】(1)SKIPIF1<0(2)證明見(jiàn)解析【分析】(1)根據(jù)題意列式求解SKIPIF1<0,即可得答案;(2)設(shè)直線SKIPIF1<0的方程,與橢圓方程聯(lián)立求SKIPIF1<0的坐標(biāo),進(jìn)而可求直線SKIPIF1<0的方程,即可得結(jié)果.【詳解】(1)由題意可得:SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0,解得SKIPIF1<0,∴橢圓SKIPIF1<0的方程為SKIPIF1<0.(2)由題意知直線SKIPIF1<0的斜率存在且不為0,設(shè)直線SKIPIF1<0的斜率為k,則直線SKIPIF1<0,聯(lián)立方程SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0為圓SKIPIF1<0的直徑,點(diǎn)E在圓SKIPIF1<0上,則SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,則直線SKIPIF1<0,故用SKIPIF1<0去替代k得SKIPIF1<0,∵SKIPIF1<0,∴直線SKIPIF1<0,即SKIPIF1<0,∴直線SKIPIF1<0經(jīng)過(guò)定點(diǎn)SKIPIF1<0.【點(diǎn)睛】方法點(diǎn)睛:利用韋達(dá)定理法解決直線與圓錐曲線相交問(wèn)題的基本步驟如下:(1)設(shè)直線方程,設(shè)交點(diǎn)坐標(biāo)為SKIPIF1<0;(2)聯(lián)立直線與圓錐曲線的方程,得到關(guān)于SKIPIF1<0(或SKIPIF1<0)的一元二次方程,必要時(shí)計(jì)算SKIPIF1<0;(3)列出韋達(dá)定理;(4)將所求問(wèn)題或題中的關(guān)系轉(zhuǎn)化為SKIPIF1<0、SKIPIF1<0(或SKIPIF1<0、SKIPIF1<0)的形式;(5)代入韋達(dá)定理求解.4.(2022秋·福建福州·高三??计谀┮阎獧E圓C:SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0.右焦點(diǎn)為F,縱坐標(biāo)為SKIPIF1<0的點(diǎn)M在C上,且AF⊥MF.(1)求C的方程;(2)設(shè)過(guò)A與x軸垂直的直線為l,縱坐標(biāo)不為0的點(diǎn)P為C上一動(dòng)點(diǎn),過(guò)F作直線PA的垂線交l于點(diǎn)Q,證明:直線PQ過(guò)定點(diǎn).【答案】(1)SKIPIF1<0(2)過(guò)定點(diǎn)SKIPIF1<0;證明過(guò)程見(jiàn)詳解【分析】(1)由題可得SKIPIF1<0,結(jié)合條件可知SKIPIF1<0,將點(diǎn)SKIPIF1<0的坐標(biāo)代入橢圓SKIPIF1<0的方程,即可得解;(2)設(shè)點(diǎn)SKIPIF1<0,求出點(diǎn)SKIPIF1<0的坐標(biāo),寫(xiě)出直線SKIPIF1<0的方程,結(jié)合條件變形即得.【詳解】(1)設(shè)點(diǎn)SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,因?yàn)闄E圓SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,則SKIPIF1<0,將點(diǎn)SKIPIF1<0的坐標(biāo)代入橢圓SKIPIF1<0的方程得SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,因此橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0;(2)設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,所以直線SKIPIF1<0的垂線的斜率為SKIPIF1<0,由題可知SKIPIF1<0,故直線SKIPIF1<0的方程為SKIPIF1<0,在直線SKIPIF1<0的方程中,令SKIPIF1<0,可得SKIPIF1<0,即點(diǎn)SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以直線SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0.【點(diǎn)睛】求解直線過(guò)定點(diǎn)問(wèn)題常用方法如下:(1)“特殊探路,一般證明”:即先通過(guò)特殊情況確定定點(diǎn),再轉(zhuǎn)化為有方向、有目的的一般性證明;(2)“一般推理,特殊求解”即設(shè)出定點(diǎn)坐標(biāo),根據(jù)題設(shè)條件選擇參數(shù),建立一個(gè)直線系或曲線的方程,再根據(jù)參數(shù)的任意性得到一個(gè)關(guān)于定點(diǎn)坐標(biāo)的方程組,以這個(gè)方程組的解為坐標(biāo)的點(diǎn)即為所求點(diǎn);(3)求證直線過(guò)定點(diǎn)SKIPIF1<0,常利用直線的點(diǎn)斜式方程SKIPIF1<0或截距式SKIPIF1<0來(lái)證明.5.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知橢圓C:SKIPIF1<0的右焦點(diǎn)為F,上頂點(diǎn)為SKIPIF1<0,下頂點(diǎn)為SKIPIF1<0,SKIPIF1<0為等腰直角三角形,且直線SKIPIF1<0與圓SKIPIF1<0相切.(1)求橢圓C的方程;(2)過(guò)SKIPIF1<0的直線l交橢圓C于D,E兩點(diǎn)(異于點(diǎn)SKIPIF1<0,SKIPIF1<0),直線SKIPIF1<0,SKIPIF1<0相交于點(diǎn)Q.證明:點(diǎn)Q在一條平行于x軸的直線上.【答案】(1)SKIPIF1<0(2)證明見(jiàn)解析【分析】(1)由題意可知SKIPIF1<0,因?yàn)橹本€SKIPIF1<0與圓SKIPIF1<0相切,則原點(diǎn)O到直線SKIPIF1<0的距離為1,根據(jù)點(diǎn)到直線的距離公式解得SKIPIF1<0,橢圓中滿(mǎn)足SKIPIF1<0,即可求出橢圓方程;(2)設(shè)SKIPIF1<0,SKIPIF1<0,直線l方程為SKIPIF1<0,與橢圓方程聯(lián)立得SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,SKIPIF1<0,設(shè)直線SKIPIF1<0和SKIPIF1<0的交點(diǎn)為SKIPIF1<0,聯(lián)立兩直線方程求交點(diǎn),再根據(jù)韋達(dá)定理,即可得到SKIPIF1<0,得證點(diǎn)Q在一條平行于x軸的直線SKIPIF1<0上.【詳解】(1)解:由題可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為等腰直角三角形,SKIPIF1<0,又直線SKIPIF1<0與圓SKIPIF1<0相切,所以原點(diǎn)O到直線SKIPIF1<0的距離為1,直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以橢圓C的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)由過(guò)SKIPIF1<0的直線l不過(guò)SKIPIF1<0,SKIPIF1<0,可設(shè)其直線方程為SKIPIF1<0,把SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0設(shè)直線SKIPIF1<0和SKIPIF1<0的交點(diǎn)為SKIPIF1<0,則SKIPIF1<0,把SKIPIF1<0及SKIPIF1<0代入上式,得SKIPIF1<0,整理得SKIPIF1<0,故點(diǎn)Q在一條平行于x軸的直線SKIPIF1<0上,得證.6.(2023·全國(guó)·高三專(zhuān)題練習(xí))已知橢圓SKIPIF1<0:SKIPIF1<0的離心率為SKIPIF1<0,SKIPIF1<0是SKIPIF1<0上一點(diǎn).(1)求SKIPIF1<0的方程.(2)設(shè)SKIPIF1<0,SKIPIF1<0分別為橢圓SKIPIF1<0的左、右頂點(diǎn),過(guò)點(diǎn)SKIPIF1<0作斜率不為0的直線SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),直線SKIPIF1<0與直線SKIPIF1<0交于點(diǎn)SKIPIF1<0,記SKIPIF1<0的斜率為SKIPIF1<0,SKIPIF1<0的斜率為SKIPIF1<0.證明:①SKIPIF1<0為定值;②點(diǎn)SKIPIF1<0在定直線上.【答案】(1)SKIPIF1<0;(2)①證明見(jiàn)解析;②證明見(jiàn)解析.【分析】(1)由條件列出關(guān)于SKIPIF1<0的方程,解方程可得SKIPIF1<0,由此可得橢圓SKIPIF1<0的方程;(2)①聯(lián)立方程組,利用設(shè)而不求法結(jié)合兩點(diǎn)斜率公式求SKIPIF1<0即可證明;②求出直線SKIPIF1<0與直線SKIPIF1<0方程,聯(lián)立求點(diǎn)SKIPIF1<0的坐標(biāo),由此證明點(diǎn)SKIPIF1<0在定直線上.【詳解】(1)由題意,橢圓的離心率為SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0上一點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0,所以橢圓的方程為SKIPIF1<0;(2)①因?yàn)檫^(guò)點(diǎn)SKIPIF1<0且斜率不為0,所以可設(shè)SKIPIF1<0的方程為SKIPIF1<0,代入橢圓方程SKIPIF1<0得SKIPIF1<0,方程SKIPIF1<0的判別式SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.兩式相除得SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0分別為橢圓SKIPIF1<0的左、右頂點(diǎn),所以點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.從而SKIPIF1<0;②由①知SKIPIF1<0,設(shè)SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電力供應(yīng)會(huì)計(jì)崗位聘用協(xié)議
- 培訓(xùn)中心停車(chē)場(chǎng)運(yùn)營(yíng)辦法
- 地鐵車(chē)輛段建設(shè)機(jī)械臺(tái)班施工合同
- 甜品店門(mén)頭租賃協(xié)議
- 農(nóng)村林地租賃合同:林業(yè)碳匯項(xiàng)目
- 藝術(shù)團(tuán)體管理助理招聘協(xié)議
- 設(shè)計(jì)單位流程優(yōu)化方案
- 咖啡館炊事員工作守則
- 建筑工程備案審批合同ktv
- 機(jī)場(chǎng)航站樓廣告牌安裝施工合同
- C++面試題、c++面試題
- 曾國(guó)藩為人識(shí)人及用人
- 雙喜公司雙喜世紀(jì)婚禮策劃活動(dòng)
- 色貌與色貌模型
- (2021年)浙江省杭州市警察招考公安專(zhuān)業(yè)科目真題(含答案)
- 99S203消防水泵接合器安裝
- 高考口語(yǔ)考試試題答案
- 中國(guó)佛教文化課件
- 民用無(wú)人駕駛航空器飛行題庫(kù)(判斷100)
- 氣管插管術(shù) 氣管插管術(shù)
- DB32T 4301-2022《裝配式結(jié)構(gòu)工程施工質(zhì)量驗(yàn)收規(guī)程》(修訂)
評(píng)論
0/150
提交評(píng)論