高考數(shù)學(xué)一輪總復(fù)習(xí) 4.7 解三角形應(yīng)用舉例題組訓(xùn)練 理 蘇教版_第1頁
高考數(shù)學(xué)一輪總復(fù)習(xí) 4.7 解三角形應(yīng)用舉例題組訓(xùn)練 理 蘇教版_第2頁
高考數(shù)學(xué)一輪總復(fù)習(xí) 4.7 解三角形應(yīng)用舉例題組訓(xùn)練 理 蘇教版_第3頁
高考數(shù)學(xué)一輪總復(fù)習(xí) 4.7 解三角形應(yīng)用舉例題組訓(xùn)練 理 蘇教版_第4頁
高考數(shù)學(xué)一輪總復(fù)習(xí) 4.7 解三角形應(yīng)用舉例題組訓(xùn)練 理 蘇教版_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第7講解三角形應(yīng)用舉例基礎(chǔ)鞏固題組(建議用時:40分鐘)一、填空題1.兩座燈塔A和B與海岸觀察站C的距離相等,燈塔A在觀察站北偏東40°,燈塔B在觀察站南偏東60°,則燈塔A在燈塔B的________.①.北偏東10°;②北偏西10°;③南偏東10°;④南偏西10°解析燈塔A,B的相對位置如圖所示,由已知得∠ACB=80°,∠CAB=∠CBA=50°,則α=60°-50°=10°,即北偏西10°.答案②2.在某個位置測得某山峰仰角為α,對著山峰在水平地面上前進(jìn)900m后測得仰角為2α,繼續(xù)在水平地面上前進(jìn)300eq\r(3)m后,測得山峰的仰角為4α,則該山峰的高度為________m.解析如圖所示,易知,在△ADE中,∠DAE=2α,∠ADE=180°-4α,AD=300eq\r(3)m,由正弦定理,得eq\f(900,sin4α)=eq\f(300\r(3),sin2α),解得cos2α=eq\f(\r(3),2),則sin2α=eq\f(1,2),sin4α=eq\f(\r(3),2),所以在Rt△ABC中山峰的高度h=300eq\r(3)sin4α=300eq\r(3)×eq\f(\r(3),2)=450(m).答案4503.在相距2千米的A,B兩點(diǎn)處測量目標(biāo)點(diǎn)C,若∠CAB=75°,∠CBA=60°,則A,C兩點(diǎn)之間的距離為________千米.解析由已知條件∠CAB=75°,∠CBA=60°,得∠ACB=45°.結(jié)合正弦定理,得eq\f(AB,sin∠ACB)=eq\f(AC,sin∠CBA),即eq\f(2,sin45°)=eq\f(AC,sin60°),解得AC=eq\r(6)(千米).答案eq\r(6)4.要測量底部不能到達(dá)的東方明珠電視塔的高度,在黃浦江西岸選擇甲、乙兩觀測點(diǎn),在甲、乙兩點(diǎn)測得塔頂?shù)难鼋欠謩e為45°,30°,在水平面上測得電視塔與甲地連線及甲、乙兩地連線所成的角為120°,甲、乙兩地相距500m,則電視塔的高度是________m.解析由題意畫出示意圖,設(shè)塔高AB=hm,在Rt△ABC中,由已知得BC=hm,在Rt△ABD中,由已知得BD=eq\r(3)hm,在△BCD中,由余弦定理BD2=BC2+CD2-2BC·CDcos∠BCD,得3h2=h2+5002+h·500,解得h=500(m).答案5005.(·廣州調(diào)研)如圖所示,長為3.5m的木棒AB斜靠在石堤旁,木棒的一端A在離堤足C處1.4m的地面上,另一端B在離堤足C處2.8m的石堤上,石堤的傾斜角為α,則坡度值tanα=________m.解析由題意,可得在△ABC中,AB=3.5m,AC=1.4m,BC=2.8m,且∠α+∠ACB=π.由余弦定理,可得AB2=AC2+BC2-2×AC×BC×cos∠ACB,即3.52=1.42+2.82-2×1.4×2.8×cos(π-α),解得cosα=eq\f(5,16),所以sinα=eq\f(\r(231),16),所以tanα=eq\f(sinα,cosα)=eq\f(\r(231),5).答案eq\f(\r(231),5)6.(·哈爾濱模擬)如圖,兩座相距60m的建筑物AB,CD的高度分別為20m,50m,BD為水平面,則從建筑物AB的頂端A看建筑物CD的張角為________.解析依題意可得AD=20eq\r(10)m,AC=30eq\r(5)m,又CD=50m,所以在△ACD中,由余弦定理,得cos∠CAD=eq\f(AC2+AD2-CD2,2AC·AD)=eq\f(30\r(5)2+20\r(10)2-502,2×30\r(5)×20\r(10))=eq\f(6000,6000\r(2))=eq\f(\r(2),2),又0°<∠CAD<180°,所以∠CAD=45°,所以從頂端A看建筑物CD的張角為45°.答案45°7.(·杭州一中測試)如圖,一艘船上午9:30在A處測得燈塔S在它的北偏東30°處,之后它繼續(xù)沿正北方向勻速航行,上午10:00到達(dá)B處,此時又測得燈塔S在它的北偏東75°處,且與它相距8eq\r(2)nmile.此船的航速是________nmile/h.解析設(shè)航速為vnmile/h,在△ABS中,AB=eq\f(1,2)v,BS=8eq\r(2)nmile,∠BSA=45°,由正弦定理,得eq\f(8\r(2),sin30°)=eq\f(\f(1,2)v,sin45°),∴v=32nmile/h.答案328.某登山隊(duì)在山腳A處測得山頂B的仰角為45°,沿傾斜角為30°的斜坡前進(jìn)1000m后到達(dá)D處,又測得山頂?shù)难鼋菫?0°,則山的高度BC為________m.解析過點(diǎn)D作DE∥AC交BC于E,因?yàn)椤螪AC=30°,故∠ADE=150°.于是∠ADB=360°-150°-60°=150°.又∠BAD=45°-30°=15°,故∠ABD=15°,由正弦定理得AB=eq\f(ADsin∠ADB,sin∠ABD)=eq\f(1000sin150°,sin15°)=500(eq\r(6)+eq\r(2))(m).所以在Rt△ABC中,BC=ABsin45°=500(eq\r(3)+1)(m).答案500(eq\r(3)+1)二、解答題9.如圖所示,測量河對岸的塔高AB時,可以選與塔底B在同一水平面內(nèi)的兩個測點(diǎn)C與D,現(xiàn)測得∠BCD=α,∠BDC=β,CD=s,并在點(diǎn)C測得塔頂A的仰角為θ,求塔高AB.解在△BCD中,∠CBD=π-α-β,由正弦定理得eq\f(BC,sin∠BDC)=eq\f(CD,sin∠CBD),所以BC=eq\f(CDsin∠BDC,sin∠CBD)=eq\f(s·sinβ,sinα+β),在Rt△ABC中,AB=BCtan∠ACB=eq\f(stanθsinβ,sinα+β).10.(·石家莊模擬)已知島A南偏西38°方向,距島A3海里的B處有一艘緝私艇.島A處的一艘走私船正以10海里/時的速度向島北偏西22°方向行駛,問緝私艇朝何方向以多大速度行駛,恰好用0.5小時能截住該走私船?eq\b\lc\(\rc\)(\a\vs4\al\co1(參考數(shù)據(jù):sin38°=\f(5\r(3),14),sin22°=\f(3\r(3),14)))解如圖,設(shè)緝私艇在C處截住走私船,D為島A正南方向上一點(diǎn),緝私艇的速度為每小時x海里,則BC=0.5x,AC=5海里,依題意,∠BAC=180°-38°-22°=120°,由余弦定理可得BC2=AB2+AC2-2AB·ACcos120°,所以BC2=49,BC=0.5x=7,解得x=14.又由正弦定理得sin∠ABC=eq\f(AC·sin∠BAC,BC)=eq\f(5×\f(\r(3),2),7)=eq\f(5\r(3),14),所以∠ABC=38°,又∠BAD=38°,所以BC∥AD,故緝私艇以每小時14海里的速度向正北方向行駛,恰好用0.5小時截住該走私船.能力提升題組(建議用時:25分鐘)一、填空題1.一個大型噴水池的中央有一個強(qiáng)力噴水柱,為了測量噴水柱噴出的水柱的高度,某人在噴水柱正西方向的點(diǎn)A測得水柱頂端的仰角為45°,沿點(diǎn)A向北偏東30°前進(jìn)100m到達(dá)點(diǎn)B,在B點(diǎn)測得水柱頂端的仰角為30°,則水柱的高度是________.解析設(shè)水柱高度是hm,水柱底端為C,則在△ABC中,A=60°,AC=h,AB=100,BC=eq\r(3)h,根據(jù)余弦定理得,(eq\r(3)h)2=h2+1002-2·h·100·cos60°,即h2+50h-5000=0,即(h-50)(h+100)=0,即h=50,故水柱的高度是50m.答案502.如圖,在湖面上高為10m處測得天空中一朵云的仰角為30°,測得湖中之影的俯角為45°,則云距湖面的高度為________m.解析在△ACE中,tan30°=eq\f(CE,AE)=eq\f(CM-10,AE).∴AE=eq\f(CM-10,tan30°)(m).在△AED中,tan45°=eq\f(DE,AE)=eq\f(CM+10,AE),∴AE=eq\f(CM+10,tan45°)(m),∴eq\f(CM-10,tan30°)=eq\f(CM+10,tan45°),∴CM=eq\f(10\r(3)+1,\r(3)-1)=10(2+eq\r(3))答案20+10eq\r(3)3.如圖所示,福建省福清石竹山原有一條筆直的山路BC,現(xiàn)在又新架設(shè)了一條索道AC.小明在山腳B處看索道AC,此時張角∠ABC=120°;從B處攀登200米到達(dá)D處,回頭看索道AC,此時張角∠ADC=150°;從D處再攀登300米到達(dá)C處.則石竹山這條索道AC長為________米.解析在△ABD中,BD=200米,∠ABD=120°.因?yàn)椤螦DB=30°,所以∠DAB=30°.由正弦定理,得eq\f(BD,sin∠DAB)=eq\f(AD,sin∠ABD),所以eq\f(200,sin30°)=eq\f(AD,sin120°).所以AD=eq\f(200×sin120°,sin30°)=200eq\r(3)(米).在△ADC中,DC=300米,∠ADC=150°,所以AC2=AD2+DC2-2AD×DC×cos∠ADC=(200eq\r(3))2+3002-2×200eq\r(3)×300×cos150°=390000,所以AC=100eq\r(39)(米).故石竹山這條索道AC長為100eq\r(39)米.答案100eq\r(39)二、解答題4.(·常州二模)如圖所示,一輛汽車從O點(diǎn)出發(fā)沿一條直線公路以50千米/時的速度勻速行駛(圖中的箭頭方向?yàn)槠囆旭偡较?,汽車開動的同時,在距汽車出發(fā)點(diǎn)O點(diǎn)的距離為5千米、距離公路線的垂直距離為3千米的M點(diǎn)的地方有一個人騎摩托車出發(fā)想把一件東西送給汽車司機(jī).問騎摩托車的人至少以多大的速度勻速行駛才能實(shí)現(xiàn)他的愿望,此時他駕駛摩托車行駛了多少千米?解作MI垂直公路所在直線于點(diǎn)I,則MI=3千米,∵OM=5千米,∴OI=4千米,∴cos∠MOI=eq\f(4,5).設(shè)騎摩托車的人的速度為v千米/時,追上汽車的時間為t小時.由余弦定理,得(vt)2=52+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論