版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年黑龍江省黑河市三縣中考數學適應性模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,中,,且,設直線截此三角形所得陰影部分的面積為S,則S與t之間的函數關系的圖象為下列選項中的A. B. C. D.2.如圖,點M為?ABCD的邊AB上一動點,過點M作直線l垂直于AB,且直線l與?ABCD的另一邊交于點N.當點M從A→B勻速運動時,設點M的運動時間為t,△AMN的面積為S,能大致反映S與t函數關系的圖象是()A. B. C. D.3.如圖,△ABC中,AB=5,BC=3,AC=4,以點C為圓心的圓與AB相切,則⊙C的半徑為()A.2.3 B.2.4 C.2.5 D.2.64.計算±的值為()A.±3 B.±9 C.3 D.95.如圖,在?ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是()A.①②③④ B.①④ C.②③④ D.①②③6.若α,β是一元二次方程3x2+2x-9=0的兩根,則的值是(
).A. B.- C.- D.7.已知一個布袋里裝有2個紅球,3個白球和a個黃球,這些球除顏色外其余都相同.若從該布袋里任意摸出1個球,是紅球的概率為,則a等于()A. B. C. D.8.中華人民共和國國家統(tǒng)計局網站公布,2016年國內生產總值約為74300億元,將74300億用科學計數法可以表示為()A. B. C. D.9.下列圖形中,既是中心對稱,又是軸對稱的是()A. B. C. D.10.如圖,直線y=kx+b與x軸交于點(﹣4,0),則y>0時,x的取值范圍是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<0二、填空題(本大題共6個小題,每小題3分,共18分)11.不等式組的所有整數解的積為__________.12.已知反比例函數y=在第二象限內的圖象如圖,經過圖象上兩點A、E分別引y軸與x軸的垂線,交于點C,且與y軸與x軸分別交于點M、B.連接OC交反比例函數圖象于點D,且,連接OA,OE,如果△AOC的面積是15,則△ADC與△BOE的面積和為_____.13.若一個多邊形的內角和為1080°,則這個多邊形的邊數為__________.14.如圖,在矩形ABCD中,E是AD上一點,把△ABE沿直線BE翻折,點A正好落在BC邊上的點F處,如果四邊形CDEF和矩形ABCD相似,那么四邊形CDEF和矩形ABCD面積比是__.15.如圖,用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽,則這個紙帽的高是_____cm.16.如圖,為保護門源百里油菜花海,由“芬芳浴”游客中心A處修建通往百米觀景長廊BC的兩條棧道AB,AC.若∠B=56°,∠C=45°,則游客中心A到觀景長廊BC的距離AD的長約為_____米.(sin56°≈0.8,tan56°≈1.5)三、解答題(共8題,共72分)17.(8分)已知二次函數y=x2-4x-5,與y軸的交點為P,與x軸交于A、B兩點.(點B在點A的右側)(1)當y=0時,求x的值.(2)點M(6,m)在二次函數y=x2-4x-5的圖像上,設直線MP與x軸交于點C,求cot∠MCB的值.18.(8分)如圖,一條公路的兩側互相平行,某課外興趣小組在公路一側AE的點A處測得公路對面的點C與AE的夾角∠CAE=30°,沿著AE方向前進15米到點B處測得∠CBE=45°,求公路的寬度.(結果精確到0.1米,參考數據:≈1.73)19.(8分)某商場用24000元購入一批空調,然后以每臺3000元的價格銷售,因天氣炎熱,空調很快售完,商場又以52000元的價格再次購入該種型號的空調,數量是第一次購入的2倍,但購入的單價上調了200元,每臺的售價也上調了200元.商場第一次購入的空調每臺進價是多少元?商場既要盡快售完第二次購入的空調,又要在這兩次空調銷售中獲得的利潤率不低于22%,打算將第二次購入的部分空調按每臺九五折出售,最多可將多少臺空調打折出售?20.(8分)如圖,一盞路燈沿燈罩邊緣射出的光線與地面BC交于點B、C,測得∠ABC=45°,∠ACB=30°,且BC=20米.(1)請用圓規(guī)和直尺畫出路燈A到地面BC的距離AD;(不要求寫出畫法,但要保留作圖痕跡)(2)求出路燈A離地面的高度AD.(精確到0.1米)(參考數據:≈1.414,≈1.732).21.(8分)如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D,E是AB延長線上一點,CE交⊙O于點F,連接OC、AC.(1)求證:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度數;②若⊙O的半徑為2,求線段EF的長.22.(10分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據統(tǒng)計圖中所提供的信息解答下列問題:接受問卷調查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為度;請補全條形統(tǒng)計圖;若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數.23.(12分)某商店銷售兩種品牌的計算器,購買2個A品牌和3個B品牌的計算器共需280元;購買3個A品牌和1個B品牌的計算器共需210元.(Ⅰ)求這兩種品牌計算器的單價;(Ⅱ)開學前,該商店對這兩種計算器開展了促銷活動,具體辦法如下:A品牌計算器按原價的九折銷售,B品牌計算器10個以上超出部分按原價的七折銷售.設購買x個A品牌的計算器需要y1元,購買x個B品牌的計算器需要y2元,分別求出y1,y2關于x的函數關系式.(Ⅲ)某校準備集體購買同一品牌的計算器,若購買計算器的數量超過15個,購買哪種品牌的計算器更合算?請說明理由.24.如圖,在平行四邊形中,的平分線與邊相交于點.(1)求證;(2)若點與點重合,請直接寫出四邊形是哪種特殊的平行四邊形.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質得出∠OCD=∠A,即∠AOD=∠OCD=45°,進而證明OD=CD=t;最后根據三角形的面積公式,解答出S與t之間的函數關系式,由函數解析式來選擇圖象.【詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數關系的圖象應為定義域為[0,3],開口向上的二次函數圖象;故選D.【點睛】本題主要考查的是二次函數解析式的求法及二次函數的圖象特征,解答本題的關鍵是根據三角形的面積公式,解答出S與t之間的函數關系式,由函數解析式來選擇圖象.2、C【解析】分析:本題需要分兩種情況來進行計算得出函數解析式,即當點N和點D重合之前以及點M和點B重合之前,根據題意得出函數解析式.詳解:假設當∠A=45°時,AD=2,AB=4,則MN=t,當0≤t≤2時,AM=MN=t,則S=,為二次函數;當2≤t≤4時,S=t,為一次函數,故選C.點睛:本題主要考查的就是函數圖像的實際應用問題,屬于中等難度題型.解答這個問題的關鍵就是得出函數關系式.3、B【解析】試題分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如圖:設切點為D,連接CD,∵AB是⊙C的切線,∴CD⊥AB,∵S△ABC=AC×BC=AB×CD,∴AC×BC=AB×CD,即CD===,∴⊙C的半徑為,故選B.考點:圓的切線的性質;勾股定理.4、B【解析】
∵(±9)2=81,∴±±9.故選B.5、D【解析】
∵在?ABCD中,AO=AC,∵點E是OA的中點,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴=,∵AD=BC,∴AF=AD,∴;故①正確;∵S△AEF=4,=()2=,∴S△BCE=36;故②正確;∵=,∴=,∴S△ABE=12,故③正確;∵BF不平行于CD,∴△AEF與△ADC只有一個角相等,∴△AEF與△ACD不一定相似,故④錯誤,故選D.6、C【解析】分析:根據根與系數的關系可得出α+β=-、αβ=-3,將其代入=中即可求出結論.詳解:∵α、β是一元二次方程3x2+2x-9=0的兩根,∴α+β=-,αβ=-3,∴===.故選C.點睛:本題考查了根與系數的關系,牢記兩根之和等于-、兩根之積等于是解題的關鍵.7、A【解析】
此題考查了概率公式的應用.注意用到的知識點為:概率=所求情況數與總情況數之比.根據題意得:,解得:a=1,經檢驗,a=1是原分式方程的解,故本題選A.8、D【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:74300億=7.43×1012,
故選:D.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.9、C【解析】
根據中心對稱圖形,軸對稱圖形的定義進行判斷.【詳解】A、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,也不是軸對稱圖形,故本選項錯誤;C、既是中心對稱圖形,又是軸對稱圖形,故本選項正確;D、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形,軸對稱圖形的判斷.關鍵是根據圖形自身的對稱性進行判斷.10、A【解析】試題分析:充分利用圖形,直接從圖上得出x的取值范圍.由圖可知,當y<1時,x<-4,故選C.考點:本題考查的是一次函數的圖象點評:解答本題的關鍵是掌握在x軸下方的部分y<1,在x軸上方的部分y>1.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
解:,解不等式①得:,解不等式②得:,∴不等式組的整數解為﹣1,1,1…51,所以所有整數解的積為1,故答案為1.【點睛】本題考查一元一次不等式組的整數解,準確計算是關鍵,難度不大.12、1.【解析】連結AD,過D點作DG∥CM,∵,△AOC的面積是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面積是5,△ODF的面積是15×=,∴四邊形AMGF的面積=,∴△BOE的面積=△AOM的面積=×=12,∴△ADC與△BOE的面積和為5+12=1,故答案為:1.13、1【解析】
根據多邊形內角和定理:(n﹣2)?110(n≥3)可得方程110(x﹣2)=1010,再解方程即可.【詳解】解:設多邊形邊數有x條,由題意得:110(x﹣2)=1010,解得:x=1,故答案為:1.【點睛】此題主要考查了多邊形內角和定理,關鍵是熟練掌握計算公式:(n﹣2)?110(n≥3).14、【解析】由題意易得四邊形ABFE是正方形,設AB=1,CF=x,則有BC=x+1,CD=1,∵四邊形CDEF和矩形ABCD相似,∴CD:BC=FC:CD,即1:(x+1)=x:1,∴x=或x=(舍去),∴=,故答案為.【點睛】本題考查了折疊的性質,相似多邊形的性質等,熟練掌握相似多邊形的面積比等于相似比的平方是解題的關鍵.15、【解析】
先求出扇形弧長,再求出圓錐的底面半徑,再根據勾股定理即可出圓錐的高.【詳解】圓心角為120°,半徑為6cm的扇形的弧長為4cm∴圓錐的底面半徑為2,故圓錐的高為=4cm【點睛】此題主要考查圓的弧長及圓錐的底面半徑,解題的關鍵是熟知圓的相關公式.16、60【解析】
根據題意和圖形可以分別表示出AD和CD的長,從而可以求得AD的長,本題得以解決.【詳解】∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米,∴BD=,CD=,∴+=100,解得,AD≈60考點:解直角三角形的應用.三、解答題(共8題,共72分)17、(1),;(2)【解析】
(1)當y=0,則x2-4x-5=0,解方程即可得到x的值.(2)由題意易求M,P點坐標,再求出MP的直線方程,可得cot∠MCB.【詳解】(1)把代入函數解析式得,即,解得:,.(2)把代入得,即得,∵二次函數,與軸的交點為,∴點坐標為.設直線的解析式為,代入,得解得,∴,∴點坐標為,在中,又∵∴.【點睛】本題考查的知識點是拋物線與x軸的交點,二次函數的性質,解題的關鍵是熟練的掌握拋物線與x軸的交點,二次函數的性質.18、公路的寬為20.5米.【解析】
作CD⊥AE,設CD=x米,由∠CBD=45°知BD=CD=x,根據tan∠CAD=,可得=,解之即可.【詳解】解:如圖,過點C作CD⊥AE于點D,設公路的寬CD=x米,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵∠CAE=30°,∴tan∠CAD==,即=,解得:x=≈20.5(米),答:公路的寬為20.5米.【點睛】本題考查了直角三角形的應用,解答本題的關鍵是根據仰角構造直角三角形,利用三角函數解直角三角形.19、(1)2400元;(2)8臺.【解析】試題分析:(1)設商場第一次購入的空調每臺進價是x元,根據題目條件“商場又以52000元的價格再次購入該種型號的空調,數量是第一次購入的2倍,但購入的單價上調了200元,每臺的售價也上調了200元”列出分式方程解答即可;
(2)設最多將臺空調打折出售,根據題目條件“在這兩次空調銷售中獲得的利潤率不低于22%,打算將第二次購入的部分空調按每臺九五折出售”列出不等式并解答即可.試題解析:(1)設第一次購入的空調每臺進價是x元,依題意,得解得經檢驗,是原方程的解.答:第一次購入的空調每臺進價是2400元.(2)由(1)知第一次購入空調的臺數為24000÷2400=10(臺),第二次購入空調的臺數為10×2=20(臺).設第二次將y臺空調打折出售,由題意,得解得答:最多可將8臺空調打折出售.20、(1)見解析;(2)是7.3米【解析】
(1)圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)在△ABD中,DB=AD;在△ACD中,CD=AD,BC=BD+CD,由此可以建立關于AD的方程,解方程求解.【詳解】解:(1)如下圖,圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)設AD=x,在Rt△ABD中,∠ABD=45°,∴BD=AD=x,∴CD=20﹣x.∵tan∠ACD=,即tan30°=,∴x==10(﹣1)≈7.3(米).答:路燈A離地面的高度AD約是7.3米.【點睛】解此題關鍵是把實際問題轉化為數學問題,把實際問題抽象到解直角三角形中,利用三角函數解答即可.21、(1)證明見解析;(2)①∠OCE=45°;②EF=-2.【解析】【試題分析】(1)根據直線與⊙O相切的性質,得OC⊥CD.又因為AD⊥CD,根據同一平面內,垂直于同一條直線的兩條直線也平行,得:AD//OC.∠DAC=∠OCA.又因為OC=OA,根據等邊對等角,得∠OAC=∠OCA.等量代換得:∠DAC=∠OAC.根據角平分線的定義得:AC平分∠DAO.(2)①因為AD//OC,∠DAO=105°,根據兩直線平行,同位角相等得,∠EOC=∠DAO=105°,在中,∠E=30°,利用內角和定理,得:∠OCE=45°.②作OG⊥CE于點G,根據垂徑定理可得FG=CG,因為OC=,∠OCE=45°.等腰直角三角形的斜邊是腰長的倍,得CG=OG=2.FG=2.在Rt△OGE中,∠E=30°,得GE=,則EF=GE-FG=-2.【試題解析】(1)∵直線與⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于點G,可得FG=CG∵OC=,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=.∴EF=GE-FG=-2.【方法點睛】本題目是一道圓的綜合題目,涉及到圓的切線的性質,平行線的性質及判定,三角形內角和,垂徑定理,難度為中等.22、(1)60,90;(2)見解析;(3)300人【解析】
(1)由了解很少的有30人,占50%,可求得接受問卷調查的學生數,繼而求得扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角;(2)由(1)可求得了解的人數,繼而補全條形統(tǒng)計圖;(3)利用樣本估計總體的方法,即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調查的學生共有:30÷50%=60(人);∴扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為:×360°=90°;故答案為60,90;(2)60﹣15﹣30﹣10=5;補全條形統(tǒng)計圖得:(3)根據題意得:900×=300(人),則估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數為300人.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖,解題的關鍵是熟練的掌握條形統(tǒng)計圖與扇形統(tǒng)計圖的相關知識點.23、(1)A種品牌計算器50元/個,B種品牌計算器60元/個;(2)y1=45x,y2=;(3)詳見解析.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)廚房承接協(xié)議樣本(2024年度版)版B版
- 2024年軟件分銷商授權協(xié)議3篇
- 2024年貸款協(xié)議模板:不動產抵押借款條款版B版
- 2025年度智能機器人控制系統(tǒng)研發(fā)與采購合同3篇
- 2024年版租賃權轉讓合同
- 現金服務知識培訓課件
- 2024年量子計算機研發(fā)與轉讓協(xié)議
- 《消防逃生安全知識》課件
- 長安大學《土壤污染治理》2023-2024學年第一學期期末試卷
- 美容行業(yè)的護理顧問工作總結
- 部門預算編制培訓課件
- 采購缺乏計劃性的整改措施
- 《閥門安裝一般規(guī)定》課件
- 邊緣計算應用
- 江蘇省建筑節(jié)能分部工程施工方案范本
- 危險化學品事故應急預案
- 高考寫作指導:《登泰山記》《我與地壇》材料
- 同意未成年出國聲明 - 中英
- 人工造林項目投標方案
- 數字經濟學導論-全套課件
- 2023版(五級)脊柱按摩師技能認定考試題庫大全-上(單選題部分)
評論
0/150
提交評論