2024屆四川省達州市中考數(shù)學最后沖刺模擬試卷含解析_第1頁
2024屆四川省達州市中考數(shù)學最后沖刺模擬試卷含解析_第2頁
2024屆四川省達州市中考數(shù)學最后沖刺模擬試卷含解析_第3頁
2024屆四川省達州市中考數(shù)學最后沖刺模擬試卷含解析_第4頁
2024屆四川省達州市中考數(shù)學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆四川省達州市中考數(shù)學最后沖刺模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,正方形ABCD的邊長為2,其面積標記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2,…,按照此規(guī)律繼續(xù)下去,則S2018的值為()A. B. C. D.2.從一個邊長為3cm的大立方體挖去一個邊長為1cm的小立方體,得到的幾何體如圖所示,則該幾何體的左視圖正確的是()A. B. C. D.3.下列計算正確的是()A.a(chǎn)2?a3=a6 B.(a2)3=a6 C.a(chǎn)6﹣a2=a4 D.a(chǎn)5+a5=a104.小張同學制作了四張材質(zhì)和外觀完全一樣的書簽,每個書簽上寫著一本書的名稱或一個作者姓名,分別是:《西游記》、施耐庵、《安徒生童話》、安徒生,從這四張書簽中隨機抽取兩張,則抽到的書簽正好是相對應的書名和作者姓名的概率是()A. B. C. D.5.我國第一艘航母“遼寧艦”最大排水量為67500噸,用科學記數(shù)法表示這個數(shù)字是A.6.75×103噸 B.67.5×103噸 C.6.75×104噸 D.6.75×105噸6.如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點,P為弧BC上一動點(不與C,B重合),則2PD+PB的最小值為()A.4+23 B.437.不解方程,判別方程2x2﹣3x=3的根的情況()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.有一個實數(shù)根 D.無實數(shù)根8.如圖,已知反比函數(shù)的圖象過Rt△ABO斜邊OB的中點D,與直角邊AB相交于C,連結(jié)AD、OC,若△ABO的周長為,AD=2,則△ACO的面積為()A. B.1 C.2 D.49.如圖,在矩形ABCD中,AB=2,BC=1.若點E是邊CD的中點,連接AE,過點B作BF⊥AE交AE于點F,則BF的長為()A. B. C. D.10.已知反比例函數(shù)下列結(jié)論正確的是()A.圖像經(jīng)過點(-1,1) B.圖像在第一、三象限C.y隨著x的增大而減小 D.當x>1時,y<111.一元二次方程x2+x﹣2=0的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.只有一個實數(shù)根 D.沒有實數(shù)根12.某中學籃球隊12名隊員的年齡如下表:年齡:(歲)13141516人數(shù)1542關(guān)于這12名隊員的年齡,下列說法錯誤的是()A.眾數(shù)是14歲 B.極差是3歲 C.中位數(shù)是14.5歲 D.平均數(shù)是14.8歲二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點A為函數(shù)y=(x>0)圖象上一點,連結(jié)OA,交函數(shù)y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△OBC的面積為____.14.因式分解:3a3﹣6a2b+3ab2=_____.15.如圖,AB是圓O的直徑,弦CD⊥AB,∠BCD=30°,CD=43,則S陰影=_____.16.圖中是兩個全等的正五邊形,則∠α=______.17.計算:的結(jié)果是_____.18.如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,如果AB=26,CD=24,那么sin∠OCE=▲.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AD、BC相交于點O,AD=BC,∠C=∠D=90°.求證:△ACB≌△BDA;若∠ABC=36°,求∠CAO度數(shù).20.(6分)直線y1=kx+b與反比例函數(shù)的圖象分別交于點A(m,4)和點B(n,2),與坐標軸分別交于點C和點D.(1)求直線AB的解析式;(2)根據(jù)圖象寫出不等式kx+b﹣≤0的解集;(3)若點P是x軸上一動點,當△COD與△ADP相似時,求點P的坐標.21.(6分)如圖1,將長為10的線段OA繞點O旋轉(zhuǎn)90°得到OB,點A的運動軌跡為,P是半徑OB上一動點,Q是上的一動點,連接PQ.(1)當∠POQ=時,PQ有最大值,最大值為;(2)如圖2,若P是OB中點,且QP⊥OB于點P,求的長;(3)如圖3,將扇形AOB沿折痕AP折疊,使點B的對應點B′恰好落在OA的延長線上,求陰影部分面積.22.(8分)解分式方程:=123.(8分)如圖,點B、E、C、F在同一條直線上,AB=DE,AC=DF,BE=CF,求證:AB∥DE.24.(10分)某中學為了解八年級學習體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果分為A、B、C、D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:(1)本次抽樣調(diào)查共抽取了多少名學生?(2)求測試結(jié)果為C等級的學生數(shù),并補全條形圖;(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結(jié)果為D等級的學生有多少名.25.(10分)如圖,在平面直角坐標系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點,AB⊥OA交x軸于點B,且OA=AB.求雙曲線的解析式;求點C的坐標,并直接寫出y1<y2時x的取值范圍.26.(12分)如圖,AB是⊙O的直徑,C、D為⊙O上兩點,且,過點O作OE⊥AC于點E⊙O的切線AF交OE的延長線于點F,弦AC、BD的延長線交于點G.(1)求證:∠F=∠B;(2)若AB=12,BG=10,求AF的長.27.(12分)如圖,直線y=12x與雙曲線y=kx(k>0,x>0)交于點A,將直線y=12(1)設(shè)點B的橫坐標分別為b,試用只含有字母b的代數(shù)式表示k;(2)若OA=3BC,求k的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據(jù)等腰直角三角形的性質(zhì)可得出2S2=S1,根據(jù)數(shù)的變化找出變化規(guī)律“Sn=()n﹣2”,依此規(guī)律即可得出結(jié)論.【詳解】如圖所示,∵正方形ABCD的邊長為2,△CDE為等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.觀察,發(fā)現(xiàn)規(guī)律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,∴Sn=()n﹣2.當n=2018時,S2018=()2018﹣2=()3.故選A.【點睛】本題考查了等腰直角三角形的性質(zhì)、勾股定理,解題的關(guān)鍵是利用圖形找出規(guī)律“Sn=()n﹣2”.2、C【解析】

左視圖就是從物體的左邊往右邊看.小正方形應該在右上角,故B錯誤,看不到的線要用虛線,故A錯誤,大立方體的邊長為3cm,挖去的小立方體邊長為1cm,所以小正方形的邊長應該是大正方形,故D錯誤,所以C正確.故此題選C.3、B【解析】

根據(jù)同底數(shù)冪乘法、冪的乘方的運算性質(zhì)計算后利用排除法求解.【詳解】A、a2?a3=a5,錯誤;B、(a2)3=a6,正確;C、不是同類項,不能合并,錯誤;D、a5+a5=2a5,錯誤;故選B.【點睛】本題綜合考查了整式運算的多個考點,包括同底數(shù)冪的乘法、冪的乘方、合并同類項,需熟練掌握且區(qū)分清楚,才不容易出錯.4、D【解析】

根據(jù)題意先畫出樹狀圖得出所有等情況數(shù)和到的書簽正好是相對應的書名和作者姓名的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有12種等情況數(shù),抽到的書簽正好是相對應的書名和作者姓名的有2種情況,則抽到的書簽正好是相對應的書名和作者姓名的概率是=;故選D.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、C【解析】試題分析:根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).67500一共5位,從而67500=6.75×2.故選C.6、D【解析】

如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根據(jù)勾股定理得到PP′=2+82+(2【詳解】如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值為47,故選D.【點睛】本題考查了軸對稱-最短距離問題,相似三角形的判定和性質(zhì),勾股定理,正確的作出輔助線是解題的關(guān)鍵.7、B【解析】一元二次方程的根的情況與根的判別式有關(guān),,方程有兩個不相等的實數(shù)根,故選B8、A【解析】

在直角三角形AOB中,由斜邊上的中線等于斜邊的一半,求出OB的長,根據(jù)周長求出直角邊之和,設(shè)其中一直角邊AB=x,表示出OA,利用勾股定理求出AB與OA的長,過D作DE垂直于x軸,得到E為OA中點,求出OE的長,在直角三角形DOE中,利用勾股定理求出DE的長,利用反比例函數(shù)k的幾何意義求出k的值,確定出三角形AOC面積即可.【詳解】在Rt△AOB中,AD=2,AD為斜邊OB的中線,∴OB=2AD=4,由周長為4+2,得到AB+AO=2,設(shè)AB=x,則AO=2-x,根據(jù)勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,∴AB=+,OA=-,過D作DE⊥x軸,交x軸于點E,可得E為AO中點,∴OE=OA=(-)(假設(shè)OA=+,與OA=-,求出結(jié)果相同),在Rt△DEO中,利用勾股定理得:DE==(+)),∴k=-DE?OE=-(+))×(-))=1.∴S△AOC=DE?OE=,故選A.【點睛】本題屬于反比例函數(shù)綜合題,涉及的知識有:勾股定理,直角三角形斜邊的中線性質(zhì),三角形面積求法,以及反比例函數(shù)k的幾何意義,熟練掌握反比例的圖象與性質(zhì)是解本題關(guān)鍵.9、B【解析】

根據(jù)S△ABE=S矩形ABCD=1=?AE?BF,先求出AE,再求出BF即可.【詳解】如圖,連接BE.∵四邊形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=?AE?BF,∴BF=.故選:B.【點睛】本題考查矩形的性質(zhì)、勾股定理、三角形的面積公式等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,學會用面積法解決有關(guān)線段問題,屬于中考??碱}型.10、B【解析】分析:直接利用反比例函數(shù)的性質(zhì)進而分析得出答案.詳解:A.反比例函數(shù)y=,圖象經(jīng)過點(﹣1,﹣1),故此選項錯誤;B.反比例函數(shù)y=,圖象在第一、三象限,故此選項正確;C.反比例函數(shù)y=,每個象限內(nèi),y隨著x的增大而減小,故此選項錯誤;D.反比例函數(shù)y=,當x>1時,0<y<1,故此選項錯誤.故選B.點睛:本題主要考查了反比例函數(shù)的性質(zhì),正確掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.11、A【解析】∵?=12-4×1×(-2)=9>0,∴方程有兩個不相等的實數(shù)根.故選A.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2﹣4ac:當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.12、D【解析】分別利用極差以及中位數(shù)和眾數(shù)以及平均數(shù)的求法分別分析得出答案.解:由圖表可得:14歲的有5人,故眾數(shù)是14,故選項A正確,不合題意;極差是:16﹣13=3,故選項B正確,不合題意;中位數(shù)是:14.5,故選項C正確,不合題意;平均數(shù)是:(13+14×5+15×4+16×2)÷12≈14.5,故選項D錯誤,符合題意.故選D.“點睛”此題主要考查了極差以及中位數(shù)和眾數(shù)以及平均數(shù)的求法,正確把握相關(guān)定義是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、6【解析】

根據(jù)題意可以分別設(shè)出點A、點B的坐標,根據(jù)點O、A、B在同一條直線上可以得到A、B的坐標之間的關(guān)系,由AO=AC可知點C的橫坐標是點A的橫坐標的2倍,從而可以得到△OBC的面積.【詳解】設(shè)點A的坐標為(a,),點B的坐標為(b,),∵點C是x軸上一點,且AO=AC,∴點C的坐標是(2a,0),設(shè)過點O(0,0),A(a,)的直線的解析式為:y=kx,∴=k?a,解得k=,又∵點B(b,)在y=x上,∴=?b,解得,=或=?(舍去),∴S△OBC==6.故答案為:6.【點睛】本題考查了等腰三角形的性質(zhì)與反比例函數(shù)的圖象以及三角形的面積公式,解題的關(guān)鍵是熟練的掌握等腰三角形的性質(zhì)與反比例函數(shù)的圖象以及三角形的面積公式.14、3a(a﹣b)1【解析】

首先提取公因式3a,再利用完全平方公式分解即可.【詳解】3a3﹣6a1b+3ab1,=3a(a1﹣1ab+b1),=3a(a﹣b)1.故答案為:3a(a﹣b)1.【點睛】此題考查多項式的因式分解,多項式分解因式時如果有公因式必須先提取公因式,然后再利用公式法分解因式,根據(jù)多項式的特點用適合的分解因式的方法是解題的關(guān)鍵.15、8π3【解析】

根據(jù)垂徑定理求得CE=ED=23,然后由圓周角定理知∠DOE=60°,然后通過解直角三角形求得線段OD、OE的長度,最后將相關(guān)線段的長度代入S陰影=S扇形ODB-S△DOE+S【詳解】如圖,假設(shè)線段CD、AB交于點E,∵AB是O的直徑,弦CD⊥AB,∴CE=ED=2又∵∠BCD=30∴∠DOE=2∠BCD=60∴OE=DE∴S陰影=S扇形ODB?S△DOE+S△BEC=60故答案為:8π3【點睛】考查圓周角定理,垂徑定理,扇形面積的計算,熟練掌握扇形的面積公式是解題的關(guān)鍵.16、108°【解析】

先求出正五邊形各個內(nèi)角的度數(shù),再求出∠BCD和∠BDC的度數(shù),求出∠CBD,即可求出答案.【詳解】如圖:∵圖中是兩個全等的正五邊形,∴BC=BD,∴∠BCD=∠BDC,∵圖中是兩個全等的正五邊形,∴正五邊形每個內(nèi)角的度數(shù)是=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案為108°.【點睛】本題考查了正多邊形和多邊形的內(nèi)角和外角,能求出各個角的度數(shù)是解此題的關(guān)鍵.17、【解析】試題分析:先進行二次根式的化簡,然后合并同類二次根式即可,考點:二次根式的加減18、【解析】垂徑定理,勾股定理,銳角三角函數(shù)的定義。【分析】如圖,設(shè)AB與CD相交于點E,則根據(jù)直徑AB=26,得出半徑OC=13;由CD=24,CD⊥AB,根據(jù)垂徑定理得出CE=12;在Rt△OCE中,利用勾股定理求出OE=5;再根據(jù)正弦函數(shù)的定義,求出sin∠OCE的度數(shù):。三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析(2)18°【解析】

(1)根據(jù)HL證明Rt△ABC≌Rt△BAD即可;(2)利用全等三角形的性質(zhì)及直角三角形兩銳角互余的性質(zhì)求解即可.【詳解】(1)證明:∵∠D=∠C=90°,∴△ABC和△BAD都是Rt△,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL);(2)∵Rt△ABC≌Rt△BAD,∴∠ABC=∠BAD=36°,∵∠C=90°,∴∠BAC=54°,∴∠CAO=∠CAB﹣∠BAD=18°.【點睛】本題考查了全等三角形的判定與性質(zhì),判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”.20、(1)y=﹣x+6;(2)0<x<2或x>4;(3)點P的坐標為(2,0)或(﹣3,0).【解析】

(1)將點坐標代入雙曲線中即可求出,最后將點坐標代入直線解析式中即可得出結(jié)論;(2)根據(jù)點坐標和圖象即可得出結(jié)論;(3)先求出點坐標,進而求出,設(shè)出點P坐標,最后分兩種情況利用相似三角形得出比例式建立方程求解即可得出結(jié)論.【詳解】解:(1)∵點和點在反比例函數(shù)的圖象上,,解得,即把兩點代入中得,解得:,所以直線的解析式為:;(2)由圖象可得,當時,的解集為或.(3)由(1)得直線的解析式為,當時,y=6,,,當時,,∴點坐標為.設(shè)P點坐標為,由題可以,點在點左側(cè),則由可得①當時,,,解得,故點P坐標為②當時,,,解得,即點P的坐標為因此,點P的坐標為或時,與相似.【點睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,相似三角形的性質(zhì),用方程的思想和分類討論的思想解決問題是解本題的關(guān)鍵.21、(1);(2);(3)【解析】

(1)先判斷出當PQ取最大時,點Q與點A重合,點P與點B重合,即可得出結(jié)論;(2)先判斷出∠POQ=60°,最后用弧長用弧長公式即可得出結(jié)論;(3)先在Rt△B'OP中,OP2+=,解得OP=,最后用面積的和差即可得出結(jié)論.【詳解】解:(1)∵P是半徑OB上一動點,Q是上的一動點,∴當PQ取最大時,點Q與點A重合,點P與點B重合,此時,∠POQ=90°,PQ=,故答案為:90°,10;(2)解:如圖,連接OQ,∵點P是OB的中點,∴OP=OB=OQ.∵QP⊥OB,∴∠OPQ=90°在Rt△OPQ中,cos∠QOP=,∴∠QOP=60°,∴l(xiāng)BQ;(3)由折疊的性質(zhì)可得,,在Rt△B'OP中,OP2+=,解得OP=,S陰影=S扇形AOB﹣2S△AOP=.【點睛】此題是圓的綜合題,主要考查了圓的性質(zhì),弧長公式,扇形的面積公式,熟記公式是解本題的關(guān)鍵.22、x=1【解析】

分式方程變形后去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】化為整式方程得:2﹣3x=x﹣2,解得:x=1,經(jīng)檢驗x=1是原方程的解,所以原方程的解是x=1.【點睛】此題考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.解分式方程一定注意要驗根.23、詳見解析.【解析】試題分析:利用SSS證明△ABC≌△DEF,根據(jù)全等三角形的性質(zhì)可得∠B=∠DEF,再由平行線的判定即可得AB∥DE.試題解析:證明:由BE=CF可得BC=EF,又AB=DE,AC=DF,故△ABC≌△DEF(SSS),則∠B=∠DEF,∴AB∥DE.考點:全等三角形的判定與性質(zhì).24、(1)50名;(2)16名;見解析;(3)56名.【解析】試題分析:根據(jù)A等級的人數(shù)和百分比求出總?cè)藬?shù);根據(jù)總?cè)藬?shù)和A、B、D三個等級的人數(shù)求出C等級的人數(shù);利用總?cè)藬?shù)乘以D等級人數(shù)的百分比得出答案.試題解析:(1)10÷20%=50(名)答:本次抽樣共抽取了50名學生.(2)50-10-20-4=16(名)答:測試結(jié)果為C等級的學生有16名.補全圖形如圖所示:(3)700×(4÷50)=56(名)答:估計該中學八年級700名學生中體能測試為D等級的學生有56名.考點:統(tǒng)計圖.25、(1);(1)C(﹣1,﹣4),x的取值范圍是x<﹣1或0<x<1.【解析】【分析】(1)作高線AC,根據(jù)等腰直角三角形的性質(zhì)和點A的坐標的特點得:x=1x﹣1,可得A的坐標,從而得雙曲線的解析式;(1)聯(lián)立一次函數(shù)和反比例函數(shù)解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論