2023-2024學(xué)年陜西省西安市高新第二初級中學(xué)中考數(shù)學(xué)全真模擬試卷含解析_第1頁
2023-2024學(xué)年陜西省西安市高新第二初級中學(xué)中考數(shù)學(xué)全真模擬試卷含解析_第2頁
2023-2024學(xué)年陜西省西安市高新第二初級中學(xué)中考數(shù)學(xué)全真模擬試卷含解析_第3頁
2023-2024學(xué)年陜西省西安市高新第二初級中學(xué)中考數(shù)學(xué)全真模擬試卷含解析_第4頁
2023-2024學(xué)年陜西省西安市高新第二初級中學(xué)中考數(shù)學(xué)全真模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年陜西省西安市高新第二初級中學(xué)中考數(shù)學(xué)全真模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.62.若函數(shù)的圖象在其象限內(nèi)y的值隨x值的增大而增大,則m的取值范圍是()A.m>﹣2 B.m<﹣2C.m>2 D.m<23.一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球則兩次摸到的球的顏色不同的概率為()A. B. C. D.4.在半徑等于5cm的圓內(nèi)有長為cm的弦,則此弦所對的圓周角為A.60° B.120° C.60°或120° D.30°或120°5.已知正比例函數(shù)的圖象經(jīng)過點,則此正比例函數(shù)的關(guān)系式為().A. B. C. D.6.如圖所示的幾何體的俯視圖是()A. B. C. D.7.下列四個幾何體中,主視圖是三角形的是()A. B. C. D.8.一個幾何體的三視圖如圖所示,該幾何體是A.直三棱柱 B.長方體 C.圓錐 D.立方體9.不等式組中兩個不等式的解集,在數(shù)軸上表示正確的是A. B.C. D.10.下列運算錯誤的是()A.(m2)3=m6B.a(chǎn)10÷a9=aC.x3?x5=x8D.a(chǎn)4+a3=a7二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點G是的重心,AG的延長線交BC于點D,過點G作交AC于點E,如果,那么線段GE的長為______.12.函數(shù)y=中自變量x的取值范圍是_____.13.一個多邊形的每個內(nèi)角都等于150°,則這個多邊形是_____邊形.14.如圖,長方形內(nèi)有兩個相鄰的正方形,面積分別為3和9,那么陰影部分的面積為_____.15.如圖,在□ABCD中,AC與BD交于點M,點F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點E是BC的中點,若點P以1cm/秒的速度從點A出發(fā),沿AD向點F運動;點Q同時以2cm/秒的速度從點C出發(fā),沿CB向點B運動.點P運動到F點時停止運動,點Q也同時停止運動.當(dāng)點P運動_____秒時,以點P、Q、E、F為頂點的四邊形是平行四邊形.16.如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=4,則△CEF的周長為____.17.若,則=_____.三、解答題(共7小題,滿分69分)18.(10分)已知:關(guān)于x的方程x2﹣(2m+1)x+2m=0(1)求證:方程一定有兩個實數(shù)根;(2)若方程的兩根為x1,x2,且|x1|=|x2|,求m的值.19.(5分)甲、乙、丙、丁四位同學(xué)進(jìn)行乒乓球單打比賽,要從中選出兩位同學(xué)打第一場比賽.若確定甲打第一場,再從其余三位同學(xué)中隨機(jī)選取一位,恰好選中乙同學(xué)的概率是.若隨機(jī)抽取兩位同學(xué),請用畫樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.20.(8分)已知:如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B兩點(A在B左),y軸交于點C(0,-3).(1)求拋物線的解析式;(2)若點D是線段BC下方拋物線上的動點,求四邊形ABCD面積的最大值;(3)若點E在x軸上,點P在拋物線上.是否存在以B、C、E、P為頂點且以BC為一邊的平行四邊形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.21.(10分)如圖1,在菱形ABCD中,AB=,tan∠ABC=2,點E從點D出發(fā),以每秒1個單位長度的速度沿著射線DA的方向勻速運動,設(shè)運動時間為t(秒),將線段CE繞點C順時針旋轉(zhuǎn)一個角α(α=∠BCD),得到對應(yīng)線段CF.(1)求證:BE=DF;(2)當(dāng)t=秒時,DF的長度有最小值,最小值等于;(3)如圖2,連接BD、EF、BD交EC、EF于點P、Q,當(dāng)t為何值時,△EPQ是直角三角形?22.(10分)已知關(guān)于x的一元二次方程x2+(2m+3)x+m2=1有兩根α,β求m的取值范圍;若α+β+αβ=1.求m的值.23.(12分)一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系如圖所示.(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?24.(14分)如圖,已知A(﹣4,),B(﹣1,m)是一次函數(shù)y=kx+b與反比例函數(shù)y=圖象的兩個交點,AC⊥x軸于點C,BD⊥y軸于點D.(1)求m的值及一次函數(shù)解析式;(2)P是線段AB上的一點,連接PC、PD,若△PCA和△PDB面積相等,求點P坐標(biāo).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,2ab=21﹣13=8,∴小正方形的面積為13﹣8=1.故選C.考點:勾股定理的證明.2、B【解析】

根據(jù)反比例函數(shù)的性質(zhì),可得m+1<0,從而得出m的取值范圍.【詳解】∵函數(shù)的圖象在其象限內(nèi)y的值隨x值的增大而增大,∴m+1<0,解得m<-1.故選B.3、B【解析】

本題主要需要分類討論第一次摸到的球是白球還是紅球,然后再進(jìn)行計算.【詳解】①若第一次摸到的是白球,則有第一次摸到白球的概率為,第二次,摸到白球的概率為,則有;②若第一次摸到的球是紅色的,則有第一次摸到紅球的概率為,第二次摸到白球的概率為1,則有,則兩次摸到的球的顏色不同的概率為.【點睛】掌握分類討論的方法是本題解題的關(guān)鍵.4、C【解析】

根據(jù)題意畫出相應(yīng)的圖形,由OD⊥AB,利用垂徑定理得到D為AB的中點,由AB的長求出AD與BD的長,且得出OD為角平分線,在Rt△AOD中,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出∠AOD的度數(shù),進(jìn)而確定出∠AOB的度數(shù),利用同弧所對的圓心角等于所對圓周角的2倍,即可求出弦AB所對圓周角的度數(shù).【詳解】如圖所示,∵OD⊥AB,∴D為AB的中點,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD為銳角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圓內(nèi)接四邊形AEBC對角互補(bǔ),∴∠AEB=120°,則此弦所對的圓周角為60°或120°.故選C.【點睛】此題考查了垂徑定理,圓周角定理,特殊角的三角函數(shù)值,以及銳角三角函數(shù)定義,熟練掌握垂徑定理是解本題的關(guān)鍵.5、A【解析】

根據(jù)待定系數(shù)法即可求得.【詳解】解:∵正比例函數(shù)y=kx的圖象經(jīng)過點(1,﹣3),∴﹣3=k,即k=﹣3,∴該正比例函數(shù)的解析式為:y=﹣3x.故選A.【點睛】此類題目需靈活運用待定系數(shù)法建立函數(shù)解析式,然后將點的坐標(biāo)代入解析式,利用方程解決問題.6、D【解析】

找到從上面看所得到的圖形即可,注意所有看到的棱都應(yīng)表現(xiàn)在俯視圖中.【詳解】從上往下看,該幾何體的俯視圖與選項D所示視圖一致.故選D.【點睛】本題考查了簡單組合體三視圖的知識,俯視圖是從物體的上面看得到的視圖.7、D【解析】

主視圖是從幾何體的正面看,主視圖是三角形的一定是一個錐體,是長方形的一定是柱體,由此分析可得答案.【詳解】解:主視圖是三角形的一定是一個錐體,只有D是錐體.故選D.【點睛】此題主要考查了幾何體的三視圖,主要考查同學(xué)們的空間想象能力.8、A【解析】

根據(jù)三視圖的形狀可判斷幾何體的形狀.【詳解】觀察三視圖可知,該幾何體是直三棱柱.故選A.本題考查了幾何體的三視圖和結(jié)構(gòu)特征,根據(jù)三視圖的形狀可判斷幾何體的形狀是關(guān)鍵.9、B【解析】由①得,x<3,由②得,x≥1,所以不等式組的解集為:1≤x<3,在數(shù)軸上表示為:,故選B.10、D【解析】【分析】利用合并同類項法則,單項式乘以單項式法則,同底數(shù)冪的乘法、除法的運算法則逐項進(jìn)行計算即可得.【詳解】A、(m2)3=m6,正確;B、a10÷a9=a,正確;C、x3?x5=x8,正確;D、a4+a3=a4+a3,錯誤,故選D.【點睛】本題考查了合并同類項、單項式乘以單項式、同底數(shù)冪的乘除法,熟練掌握各運算的運算法則是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】分析:由點G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可證得△AEG∽△ACD,然后由相似三角形的對應(yīng)邊成比例,即可求得線段GE的長.詳解:∵點G是△ABC重心,BC=6,∴CD=BC=3,AG:AD=2:3,∵GE∥BC,∴△AEG∽△ADC,∴GE:CD=AG:AD=2:3,∴GE=2.故答案為2.點睛:本題考查了三角形重心的定義和性質(zhì)、相似三角形的判定和性質(zhì).利用三角形重心的性質(zhì)得出AG:AD=2:3是解題的關(guān)鍵.12、x≥﹣且x≠1.【解析】

根據(jù)分式有意義的條件、二次根式有意義的條件列式計算.【詳解】由題意得,2x+3≥0,x-1≠0,解得,x≥-且x≠1,故答案為:x≥-且x≠1.【點睛】本題考查的是函數(shù)自變量的取值范圍,①當(dāng)表達(dá)式的分母不含有自變量時,自變量取全體實數(shù).②當(dāng)表達(dá)式的分母中含有自變量時,自變量取值要使分母不為零.③當(dāng)函數(shù)的表達(dá)式是偶次根式時,自變量的取值范圍必須使被開方數(shù)不小于零.13、1【解析】

根據(jù)多邊形的內(nèi)角和定理:180°?(n-2)求解即可.【詳解】由題意可得:180°?(n-2)=150°?n,

解得n=1.

故多邊形是1邊形.14、1-1【解析】

設(shè)兩個正方形的邊長是x、y(x<y),得出方程x2=1,y2=9,求出x=,y=1,代入陰影部分的面積是(y﹣x)x求出即可.【詳解】設(shè)兩個正方形的邊長是x、y(x<y),則x2=1,y2=9,x,y=1,則陰影部分的面積是(y﹣x)x=(11.故答案為11.【點睛】本題考查了二次根式的應(yīng)用,主要考查學(xué)生的計算能力.15、3或1【解析】

由四邊形ABCD是平行四邊形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可證得FB=FD,求出AD的長,得出CE的長,設(shè)當(dāng)點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意列出方程并解方程即可得出結(jié)果.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵點E是BC的中點,∴CE=BC=AD=9cm,要使點P、Q、E、F為頂點的四邊形是平行四邊形,則PF=EQ即可,設(shè)當(dāng)點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案為3或1.【點睛】本題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)以及一元一次方程的應(yīng)用等知識.注意掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵.16、8【解析】試題解析:∵在?ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分線交BC于點E,∴∠BAF=∠DAF,∵AB∥DF,∴∠BAF=∠F,∴∠F=∠DAF,∴△ADF是等腰三角形,AD=DF=9;∵AD∥BC,∴△EFC是等腰三角形,且FC=CE.∴EC=FC=9-6=3,∴AB=BE.∴在△ABG中,BG⊥AE,AB=6,BG=4可得:AG=2,又∵BG⊥AE,∴AE=2AG=4,∴△ABE的周長等于16,又∵?ABCD,∴△CEF∽△BEA,相似比為1:2,∴△CEF的周長為817、【解析】=.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)當(dāng)x1≥0,x2≥0或當(dāng)x1≤0,x2≤0時,m=;當(dāng)x1≥0,x2≤0時或x1≤0,x2≥0時,m=﹣.【解析】試題分析:(1)根據(jù)判別式△≥0恒成立即可判斷方程一定有兩個實數(shù)根;(2)先討論x1,x2的正負(fù),再根據(jù)根與系數(shù)的關(guān)系求解.試題解析:(1)關(guān)于x的方程x2﹣(2m+1)x+2m=0,∴△=(2m+1)2﹣8m=(2m﹣1)2≥0恒成立,故方程一定有兩個實數(shù)根;(2)①當(dāng)x1≥0,x2≥0時,即x1=x2,∴△=(2m﹣1)2=0,解得m=;②當(dāng)x1≥0,x2≤0時或x1≤0,x2≥0時,即x1+x2=0,∴x1+x2=2m+1=0,解得:m=﹣;③當(dāng)x1≤0,x2≤0時,即﹣x1=﹣x2,∴△=(2m﹣1)2=0,解得m=;綜上所述:當(dāng)x1≥0,x2≥0或當(dāng)x1≤0,x2≤0時,m=;當(dāng)x1≥0,x2≤0時或x1≤0,x2≥0時,m=﹣.19、(1)13;(2)【解析】

1)由題意可得共有乙、丙、丁三位同學(xué),恰好選中乙同學(xué)的只有一種情況,則可利用概率公式求解即可求得答案;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好選中甲、乙兩位同學(xué)的情況,再利用概率公式求解即可求得答案.【詳解】解:(1)∵甲、乙、丙、丁四位同學(xué)進(jìn)行一次乒乓球單打比賽,確定甲打第一場,再從其余的三位同學(xué)中隨機(jī)選取一位,∴恰好選到丙的概率是:13(2)畫樹狀圖得:∵共有12種等可能的結(jié)果,恰好選中甲、乙兩人的有2種情況,∴恰好選中甲、乙兩人的概率為:2【點睛】此題考查的是用列表法或樹狀圖法求概率.注意樹狀圖與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.20、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).【解析】

(1)將的坐標(biāo)代入拋物線中,求出待定系數(shù)的值,即可得出拋物線的解析式;

(2)根據(jù)的坐標(biāo),易求得直線的解析式.由于都是定值,則的面積不變,若四邊形面積最大,則的面積最大;過點作軸交于,則可得到當(dāng)面積有最大值時,四邊形的面積最大值;(3)本題應(yīng)分情況討論:①過作軸的平行線,與拋物線的交點符合點的要求,此時的縱坐標(biāo)相同,代入拋物線的解析式中即可求出點坐標(biāo);②將平移,令點落在軸(即點)、點落在拋物線(即點)上;可根據(jù)平行四邊形的性質(zhì),得出點縱坐標(biāo)(縱坐標(biāo)的絕對值相等),代入拋物線的解析式中即可求得點坐標(biāo).【詳解】解:(1)把代入,可以求得∴(2)過點作軸分別交線段和軸于點,在中,令,得設(shè)直線的解析式為可求得直線的解析式為:∵S四邊形ABCD設(shè)當(dāng)時,有最大值此時四邊形ABCD面積有最大值(3)如圖所示,如圖:①過點C作CP1∥x軸交拋物線于點P1,過點P1作P1E1∥BC交x軸于點E1,此時四邊形BP1CE1為平行四邊形,

∵C(0,-3)

∴設(shè)P1(x,-3)

∴x2-x-3=-3,解得x1=0,x2=3,

∴P1(3,-3);

②平移直線BC交x軸于點E,交x軸上方的拋物線于點P,當(dāng)BC=PE時,四邊形BCEP為平行四邊形,

∵C(0,-3)

∴設(shè)P(x,3),

∴x2-x-3=3,

x2-3x-8=0

解得x=或x=,

此時存在點P2(,3)和P3(,3),

綜上所述存在3個點符合題意,坐標(biāo)分別是P1(3,-3),P2(,3),P3(,3).【點睛】此題考查了二次函數(shù)解析式的確定、圖形面積的求法、平行四邊形的判定和性質(zhì)、二次函數(shù)的應(yīng)用等知識,綜合性強(qiáng),難度較大.21、(1)見解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒時,△EPQ是直角三角形【解析】

(1)由∠ECF=∠BCD得∠DCF=∠BCE,結(jié)合DC=BC、CE=CF證△DCF≌△BCE即可得;(2)作BE′⊥DA交DA的延長線于E′.當(dāng)點E運動至點E′時,由DF=BE′知此時DF最小,求得BE′、AE′即可得答案;(3)①∠EQP=90°時,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根據(jù)AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;②∠EPQ=90°時,由菱形ABCD的對角線AC⊥BD知EC與AC重合,可得DE=6.【詳解】(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四邊形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如圖1,作BE′⊥DA交DA的延長線于E′.當(dāng)點E運動至點E′時,DF=BE′,此時DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴設(shè)AE′=x,則BE′=2x,∴AB=x=6,x=6,則AE′=6∴DE′=6+6,DF=BE′=12,時間t=6+6,故答案為:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①當(dāng)∠EQP=90°時,如圖2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②當(dāng)∠EPQ=90°時,如圖2②,∵菱形ABCD的對角線AC⊥BD,∴EC與AC重合,∴DE=6,∴t=6秒,綜上所述,t=6秒或6秒時,△EPQ是直角三角形.【點睛】此題是菱形與動點問題,考查菱形的性質(zhì),三角形全等的判定定理,等腰三角形的性質(zhì),最短路徑問題,注意(3)中的直角沒有明確時應(yīng)分情況討論解答.22、(1)m≥﹣34;(2)m【解析】

(1)根據(jù)方程有兩個相等的實數(shù)根可知△>1,求出m的取值范圍即可;(2)根據(jù)根與系數(shù)的關(guān)系得出α+β與αβ的值,代入代數(shù)式進(jìn)行計算即可.【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論