2023-2024學(xué)年山東省德州市夏津?qū)嶒?yàn)中學(xué)中考試題猜想數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年山東省德州市夏津?qū)嶒?yàn)中學(xué)中考試題猜想數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年山東省德州市夏津?qū)嶒?yàn)中學(xué)中考試題猜想數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年山東省德州市夏津?qū)嶒?yàn)中學(xué)中考試題猜想數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年山東省德州市夏津?qū)嶒?yàn)中學(xué)中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年山東省德州市夏津?qū)嶒?yàn)中學(xué)中考試題猜想數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,直線被直線所截,,下列條件中能判定的是()A. B. C. D.2.下列運(yùn)算正確的是()A.5a+2b=5(a+b) B.a(chǎn)+a2=a3C.2a3?3a2=6a5 D.(a3)2=a53.如圖,a∥b,點(diǎn)B在直線b上,且AB⊥BC,∠1=40°,那么∠2的度數(shù)()A.40° B.50° C.60° D.90°4.在數(shù)軸上表示不等式組的解集,正確的是()A. B.C. D.5.已知:如圖四邊形OACB是菱形,OB在X軸的正半軸上,sin∠AOB=1213.反比例函數(shù)y=kx在第一象限圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F.S△AOF=A.15 B.13 C.12 D.56.隨著服裝市場競爭日益激烈,某品牌服裝專賣店一款服裝按原售價(jià)降價(jià)20%,現(xiàn)售價(jià)為a元,則原售價(jià)為()A.(a﹣20%)元 B.(a+20%)元 C.54a元 D.457.如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個(gè)端點(diǎn)分別在相互垂直的射線OM,ON上滑動(dòng),下列結(jié)論:①若C,O兩點(diǎn)關(guān)于AB對稱,則OA=;②C,O兩點(diǎn)距離的最大值為4;③若AB平分CO,則AB⊥CO;④斜邊AB的中點(diǎn)D運(yùn)動(dòng)路徑的長為π.其中正確的是()A.①② B.①②③ C.①③④ D.①②④8.要使分式有意義,則x的取值應(yīng)滿足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣29.某種商品的進(jìn)價(jià)為800元,出售時(shí)標(biāo)價(jià)為1200元,后來由于該商品積壓,商店準(zhǔn)備打折銷售,但要保證利潤率不低于5%,則至多可打()A.6折 B.7折C.8折 D.9折10.關(guān)于x的一元二次方程x2-2x-(m-1)=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是()A.且 B. C.且 D.11.一次函數(shù)滿足,且隨的增大而減小,則此函數(shù)的圖象不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.如圖,⊙O的半徑為6,直徑CD過弦EF的中點(diǎn)G,若∠EOD=60°,則弦CF的長等于()A.6 B.6 C.3 D.9二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知點(diǎn)A(a,y1)、B(b,y2)在反比例函數(shù)y=的圖象上,如果a<b<0,那么y1與y2的大小關(guān)系是:y1__y2;14.舉重比賽的總成績是選手的挺舉與抓舉兩項(xiàng)成績之和,若其中一項(xiàng)三次挑戰(zhàn)失敗,則該項(xiàng)成績?yōu)?,甲、乙是同一重量級別的舉重選手,他們近三年六次重要比賽的成績?nèi)缦拢▎挝唬汗铮喝绻闶墙叹?,要選派一名選手參加國際比賽,那么你會選擇_____(填“甲”或“乙”),理由是___________.15.如圖,在平行四邊形ABCD中,過對角線AC與BD的交點(diǎn)O作AC的垂線交于點(diǎn)E,連接CE,若AB=4,BC=6,則△CDE的周長是______.16.如圖,CD是⊙O直徑,AB是弦,若CD⊥AB,∠BCD=25°,則∠AOD=_____°.17.三人中有兩人性別相同的概率是_____________.18.一等腰三角形,底邊長是18厘米,底邊上的高是18厘米,現(xiàn)在沿底邊依次從下往上畫寬度均為3厘米的矩形,畫出的矩形是正方形時(shí)停止,則這個(gè)矩形是第_____個(gè).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,直線與雙曲線相交于、兩點(diǎn).(1),點(diǎn)坐標(biāo)為.(2)在軸上找一點(diǎn),在軸上找一點(diǎn),使的值最小,求出點(diǎn)兩點(diǎn)坐標(biāo)20.(6分)如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點(diǎn)F,在AB的延長線上有點(diǎn)E,且EF=ED.(1)求證:DE是⊙O的切線;(2)若tanA=,探究線段AB和BE之間的數(shù)量關(guān)系,并證明;(3)在(2)的條件下,若OF=1,求圓O的半徑.21.(6分)如圖,有長為14m的籬笆,現(xiàn)一面利用墻(墻的最大可用長度a為10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬AB為xm,面積為Sm1.求S與x的函數(shù)關(guān)系式及x值的取值范圍;要圍成面積為45m1的花圃,AB的長是多少米?當(dāng)AB的長是多少米時(shí),圍成的花圃的面積最大?22.(8分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,DE交AC于點(diǎn)E,且∠A=∠ADE.求證:DE是⊙O的切線;若AD=16,DE=10,求BC的長.23.(8分)已知線段a及如圖形狀的圖案.(1)用直尺和圓規(guī)作出圖中的圖案,要求所作圖案中圓的半徑為a(保留作圖痕跡)(2)當(dāng)a=6時(shí),求圖案中陰影部分正六邊形的面積.24.(10分)已知:如圖,在平行四邊形中,的平分線交于點(diǎn),過點(diǎn)作的垂線交于點(diǎn),交延長線于點(diǎn),連接,.求證:;若,,,求的長.25.(10分)五一期間,小紅到郊野公園游玩,在景點(diǎn)P處測得景點(diǎn)B位于南偏東45°方向,然后沿北偏東37°方向走200m米到達(dá)景點(diǎn)A,此時(shí)測得景點(diǎn)B正好位于景點(diǎn)A的正南方向,求景點(diǎn)A與景點(diǎn)B之間的距離.(結(jié)果保留整數(shù))參考數(shù)據(jù):sin37≈0.60,cos37°=0.80,tan37°≈0.7526.(12分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點(diǎn),交y軸于點(diǎn)C,過點(diǎn)C作x軸的平行線與拋物線上的另一個(gè)交點(diǎn)為D,連接AC、BC.點(diǎn)P是該拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m(m>4).(1)求該拋物線的表達(dá)式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點(diǎn)A、P的直線與y軸于點(diǎn)N,過點(diǎn)P作PM⊥CD,垂足為M,直線MN與x軸交于點(diǎn)Q,試判斷四邊形ADMQ的形狀,并說明理由.27.(12分)4月23日是世界讀書日,總書記說:“讀書可以讓人保持思想活力,讓人得到智慧啟發(fā),讓人滋養(yǎng)浩然之氣?!蹦承m憫?yīng)號召,鼓勵(lì)師生利用課余時(shí)間廣泛閱讀,該校文學(xué)社為了解學(xué)生課外閱讀的情況,抽樣調(diào)查了部分學(xué)生每周用于課外閱讀的時(shí)間,過程如下:收集數(shù)據(jù)從學(xué)校隨機(jī)抽取20名學(xué)生,進(jìn)行了每周用于課外閱讀時(shí)間的調(diào)查,數(shù)據(jù)如下(單位:min):30608150401101301469010060811201407081102010081整理數(shù)據(jù)按如下分段整理樣本數(shù)據(jù)并補(bǔ)全表格:課外閱讀時(shí)間(min)等級DCBA人數(shù)38分析數(shù)據(jù)補(bǔ)全下列表格中的統(tǒng)計(jì)量:平均數(shù)中位數(shù)眾數(shù)80得出結(jié)論(1)用樣本中的統(tǒng)計(jì)量估計(jì)該校學(xué)生每周用于課外閱讀時(shí)間的情況等級為;(2)如果該校現(xiàn)有學(xué)生400人,估計(jì)等級為“”的學(xué)生有多少名?(3)假設(shè)平均閱讀一本課外書的時(shí)間為160分鐘,請你選擇一種統(tǒng)計(jì)量估計(jì)該校學(xué)生每人一年(按52周計(jì)算)平均閱讀多少本課外書?

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】試題解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項(xiàng)錯(cuò)誤;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項(xiàng)錯(cuò)誤;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本選項(xiàng)正確;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項(xiàng)錯(cuò)誤;故選C.2、C【解析】

直接利用合并同類項(xiàng)法則以及單項(xiàng)式乘以單項(xiàng)式、冪的乘方運(yùn)算法則分別化簡得出答案.【詳解】A、5a+2b,無法計(jì)算,故此選項(xiàng)錯(cuò)誤;B、a+a2,無法計(jì)算,故此選項(xiàng)錯(cuò)誤;C、2a3?3a2=6a5,故此選項(xiàng)正確;D、(a3)2=a6,故此選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】此題主要考查了合并同類項(xiàng)以及單項(xiàng)式乘以單項(xiàng)式、冪的乘方運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.3、B【解析】分析:根據(jù)“平行線的性質(zhì)、平角的定義和垂直的定義”進(jìn)行分析計(jì)算即可.詳解:∵AB⊥BC,∴∠ABC=90°,∵點(diǎn)B在直線b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°-∠1-90°=50°,∵a∥b,∴∠2=∠3=50°.故選B.點(diǎn)睛:熟悉“平行線的性質(zhì)、平角的定義和垂直的定義”是正確解答本題的關(guān)鍵.4、C【解析】

解不等式組,再將解集在數(shù)軸上正確表示出來即可【詳解】解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集為﹣1≤x<2,故選C.【點(diǎn)睛】本題主要考查了一元一次不等式組的求解,求出題中不等式組的解集是解題的關(guān)鍵.5、A【解析】

過點(diǎn)A作AM⊥x軸于點(diǎn)M,設(shè)OA=a,通過解直角三角形找出點(diǎn)A的坐標(biāo),再根據(jù)四邊形OACB是菱形、點(diǎn)F在邊BC上,即可得出S△AOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出a的值,進(jìn)而依據(jù)點(diǎn)A的坐標(biāo)得到k的值.【詳解】過點(diǎn)A作AM⊥x軸于點(diǎn)M,如圖所示.設(shè)OA=a=OB,則,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=1213∴AM=OA?sin∠AOB=1213a,OM=5∴點(diǎn)A的坐標(biāo)為(513a,12∵四邊形OACB是菱形,S△AOF=392∴12OB×AM=39即12×a×12解得a=±132∴a=132,即A(5∵點(diǎn)A在反比例函數(shù)y=kx∴k=52故選A.【解答】解:【點(diǎn)評】本題考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是利用S△AOF=12S菱形OBCA6、C【解析】

根據(jù)題意列出代數(shù)式,化簡即可得到結(jié)果.【詳解】根據(jù)題意得:a÷(1?20%)=a÷45=5故答案選:C.【點(diǎn)睛】本題考查的知識點(diǎn)是列代數(shù)式,解題的關(guān)鍵是熟練的掌握列代數(shù)式.7、D【解析】分析:①先根據(jù)直角三角形30°的性質(zhì)和勾股定理分別求AC和AB,由對稱的性質(zhì)可知:AB是OC的垂直平分線,所以

②當(dāng)OC經(jīng)過AB的中點(diǎn)E時(shí),OC最大,則C、O兩點(diǎn)距離的最大值為4;

③如圖2,當(dāng)∠ABO=30°時(shí),易證四邊形OACB是矩形,此時(shí)AB與CO互相平分,但所夾銳角為60°,明顯不垂直,或者根據(jù)四點(diǎn)共圓可知:A、C、B、O四點(diǎn)共圓,則AB為直徑,由垂徑定理相關(guān)推論:平分弦(不是直徑)的直徑垂直于這條弦,但當(dāng)這條弦也是直徑時(shí),即OC是直徑時(shí),AB與OC互相平分,但AB與OC不一定垂直;

④如圖3,半徑為2,圓心角為90°,根據(jù)弧長公式進(jìn)行計(jì)算即可.詳解:在Rt△ABC中,∵∴①若C.O兩點(diǎn)關(guān)于AB對稱,如圖1,∴AB是OC的垂直平分線,則所以①正確;②如圖1,取AB的中點(diǎn)為E,連接OE、CE,∵∴當(dāng)OC經(jīng)過點(diǎn)E時(shí),OC最大,則C.O兩點(diǎn)距離的最大值為4;所以②正確;③如圖2,當(dāng)時(shí),∴四邊形AOBC是矩形,∴AB與OC互相平分,但AB與OC的夾角為不垂直,所以③不正確;④如圖3,斜邊AB的中點(diǎn)D運(yùn)動(dòng)路徑是:以O(shè)為圓心,以2為半徑的圓周的則:所以④正確;綜上所述,本題正確的有:①②④;故選D.點(diǎn)睛:屬于三角形的綜合體,考查了直角三角形的性質(zhì),直角三角形斜邊上中線的性質(zhì),軸對稱的性質(zhì),弧長公式等,熟練掌握直角三角形斜邊的中線等于斜邊的一半是解題的關(guān)鍵.8、D【解析】試題分析:∵分式有意義,∴x+1≠0,∴x≠﹣1,即x的取值應(yīng)滿足:x≠﹣1.故選D.考點(diǎn):分式有意義的條件.9、B【解析】

設(shè)可打x折,則有1200×-800≥800×5%,解得x≥1.即最多打1折.故選B.【點(diǎn)睛】本題考查的是一元一次不等式的應(yīng)用,解此類題目時(shí)注意利潤和折數(shù),計(jì)算折數(shù)時(shí)注意要除以2.解答本題的關(guān)鍵是讀懂題意,求出打折之后的利潤,根據(jù)利潤率不低于5%,列不等式求解.10、A【解析】

根據(jù)一元二次方程的系數(shù)結(jié)合根的判別式△>1,即可得出關(guān)于m的一元一次不等式,解之即可得出實(shí)數(shù)m的取值范圍.【詳解】∵關(guān)于x的一元二次方程x2﹣2x﹣(m﹣1)=1有兩個(gè)不相等的實(shí)數(shù)根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.故選B.【點(diǎn)睛】本題考查了根的判別式,牢記“當(dāng)△>1時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根”是解題的關(guān)鍵.11、A【解析】試題分析:根據(jù)y隨x的增大而減小得:k<0,又kb>0,則b<0,故此函數(shù)的圖象經(jīng)過第二、三、四象限,即不經(jīng)過第一象限.故選A.考點(diǎn):一次函數(shù)圖象與系數(shù)的關(guān)系.12、B【解析】

連接DF,根據(jù)垂徑定理得到,得到∠DCF=∠EOD=30°,根據(jù)圓周角定理、余弦的定義計(jì)算即可.【詳解】解:連接DF,∵直徑CD過弦EF的中點(diǎn)G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直徑,

∴∠CFD=90°,

∴CF=CD?cos∠DCF=12×=,故選B.【點(diǎn)睛】本題考查的是垂徑定理的推論、解直角三角形,掌握平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧是解題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、>【解析】

根據(jù)反比例函數(shù)的性質(zhì)求解.【詳解】反比例函數(shù)y=的圖象分布在第一、三象限,在每一象限y隨x的增大而減小,而a<b<0,所以y1>y2故答案為:>【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.也考查了反比例函數(shù)的性質(zhì).14、乙乙的比賽成績比較穩(wěn)定.【解析】

觀察表格中的數(shù)據(jù)可知:甲的比賽成績波動(dòng)幅度較大,故甲的比賽成績不穩(wěn)定;乙的比賽成績波動(dòng)幅度較小,故乙的比賽成績比較穩(wěn)定,據(jù)此可得結(jié)論.【詳解】觀察表格中的數(shù)據(jù)可得,甲的比賽成績波動(dòng)幅度較大,故甲的比賽成績不穩(wěn)定;乙的比賽成績波動(dòng)幅度較小,故乙的比賽成績比較穩(wěn)定;所以要選派一名選手參加國際比賽,應(yīng)該選擇乙,理由是乙的比賽成績比較穩(wěn)定.故答案為乙,乙的比賽成績比較穩(wěn)定.【點(diǎn)睛】本題主要考查了方差,方差是反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.15、1【解析】

由平行四邊形ABCD的對角線相交于點(diǎn)O,OE⊥AC,根據(jù)線段垂直平分線的性質(zhì),可得AE=CE,又由平行四邊形ABCD的AB+BC=AD+CD=1,繼而可得結(jié)論.【詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,AB=CD,AD=BC.∵AB=4,BC=6,∴AD+CD=1.∵OE⊥AC,∴AE=CE,∴△CDE的周長為:CD+CE+DE=CD+CE+AE=AD+CD=1.故答案為1.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),線段的垂直平分線的性質(zhì)定理等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.16、50【解析】

由CD是⊙O的直徑,弦AB⊥CD,根據(jù)垂徑定理的即可求得

=,又由圓周角定理,可得∠AOD=50°.【詳解】∵CD是⊙O的直徑,弦AB⊥CD,

∴=,

∵∠BCD=25°=,

∴∠AOD=2∠BCD=50°,

故答案為50【點(diǎn)睛】本題考查角度的求解,解題的關(guān)鍵是利用垂徑定理.17、1【解析】分析:由題意和生活實(shí)際可知:“三個(gè)人中,至少有兩個(gè)人的性別是相同的”即可得到所求概率為1.詳解:∵三人的性別存在以下可能:(1)三人都是“男性”;(2)三人都是“女性”;(3)三人的性別是“2男1女”;(4)三人的性別是“2女1男”,∴三人中至少有兩個(gè)人的性別是相同的,∴P(三人中有二人性別相同)=1.點(diǎn)睛:列出本題中所有的等可能結(jié)果是解題的關(guān)鍵.18、5【解析】

根據(jù)相似三角形的相似比求得頂點(diǎn)到這個(gè)正方形的長,再根據(jù)矩形的寬求得是第幾張.【詳解】解:已知剪得的紙條中有一張是正方形,則正方形中平行于底邊的邊是3,所以根據(jù)相似三角形的性質(zhì)可設(shè)從頂點(diǎn)到這個(gè)正方形的線段為x,則318=x所以另一段長為18-3=15,因?yàn)?5÷3=5,所以是第5張.故答案為:5.【點(diǎn)睛】本題主要考查了相相似三角形的判定和性質(zhì),關(guān)鍵是根據(jù)似三角形的性質(zhì)及等腰三角形的性質(zhì)的綜合運(yùn)用解答.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1),;(1),.【解析】

(1)由點(diǎn)A在一次函數(shù)圖象上,將A(-1,a)代入y=x+4,求出a的值,得到點(diǎn)A的坐標(biāo),再由點(diǎn)A的坐標(biāo)利用待定系數(shù)法求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點(diǎn)B坐標(biāo);

(1)作點(diǎn)A關(guān)于y軸的對稱點(diǎn)A′,作點(diǎn)B作關(guān)于x軸的對稱點(diǎn)B′,連接A′B′,交x軸于點(diǎn)P,交y軸于點(diǎn)Q,連接PB、QA.利用待定系數(shù)法求出直線A′B′的解析式,進(jìn)而求出P、Q兩點(diǎn)坐標(biāo).【詳解】解:(1)把點(diǎn)A(-1,a)代入一次函數(shù)y=x+4,

得:a=-1+4,解得:a=3,

∴點(diǎn)A的坐標(biāo)為(-1,3).

把點(diǎn)A(-1,3)代入反比例函數(shù)y=,

得:k=-3,

∴反比例函數(shù)的表達(dá)式y(tǒng)=-.

聯(lián)立兩個(gè)函數(shù)關(guān)系式成方程組得:解得:或∴點(diǎn)B的坐標(biāo)為(-3,1).

故答案為3,(-3,1);(1)作點(diǎn)A關(guān)于y軸的對稱點(diǎn)A′,作點(diǎn)B作關(guān)于x軸的對稱點(diǎn)B′,連接A′B′,交x軸于點(diǎn)P,交y軸于點(diǎn)Q,連接PB、QA,如圖所示.

∵點(diǎn)B、B′關(guān)于x軸對稱,點(diǎn)B的坐標(biāo)為(-3,1),

∴點(diǎn)B′的坐標(biāo)為(-3,-1),PB=PB′,

∵點(diǎn)A、A′關(guān)于y軸對稱,點(diǎn)A的坐標(biāo)為(-1,3),

∴點(diǎn)A′的坐標(biāo)為(1,3),QA=QA′,

∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最?。?/p>

設(shè)直線A′B′的解析式為y=mx+n,

把A′,B′兩點(diǎn)代入得:解得:∴直線A′B′的解析式為y=x+1.

令y=0,則x+1=0,解得:x=-1,點(diǎn)P的坐標(biāo)為(-1,0),

令x=0,則y=1,點(diǎn)Q的坐標(biāo)為(0,1).【點(diǎn)睛】本題考查反比例函數(shù)與一次函數(shù)的交點(diǎn)問題、待定系數(shù)法求函數(shù)解析式、軸對稱中的最短線路問題,解題的關(guān)鍵是:(1)聯(lián)立兩函數(shù)解析式成方程組,解方程組求出交點(diǎn)坐標(biāo);(1)根據(jù)軸對稱的性質(zhì)找出點(diǎn)P、Q的位置.本題屬于基礎(chǔ)題,難度適中,解決該題型題目時(shí),聯(lián)立解析式成方程組,解方程組求出交點(diǎn)坐標(biāo)是關(guān)鍵.20、(1)答案見解析;(2)AB=1BE;(1)1.【解析】試題分析:(1)先判斷出∠OCF+∠CFO=90°,再判斷出∠OCF=∠ODF,即可得出結(jié)論;(2)先判斷出∠BDE=∠A,進(jìn)而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出結(jié)論;(1)設(shè)BE=x,則DE=EF=2x,AB=1x,半徑OD=x,進(jìn)而得出OE=1+2x,最后用勾股定理即可得出結(jié)論.試題解析:(1)證明:連結(jié)OD,如圖.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵點(diǎn)D在⊙O上,∴DE是⊙O的切線;(2)線段AB、BE之間的數(shù)量關(guān)系為:AB=1BE.證明如下:∵AB為⊙O直徑,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴.∵Rt△ABD中,tanA==,∴=,∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=1BE;(1)設(shè)BE=x,則DE=EF=2x,AB=1x,半徑OD=x.∵OF=1,∴OE=1+2x.在Rt△ODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,∴x=﹣(舍)或x=2,∴圓O的半徑為1.點(diǎn)睛:本題是圓的綜合題,主要考查了切線的判定和性質(zhì),等腰三角形的性質(zhì),銳角三角函數(shù),相似三角形的判定和性質(zhì),勾股定理,判斷出△EBD∽△EDA是解答本題的關(guān)鍵.21、(1)S=﹣3x1+14x,≤x<8;(1)5m;(3)46.67m1【解析】

(1)設(shè)花圃寬AB為xm,則長為(14-3x),利用長方形的面積公式,可求出S與x關(guān)系式,根據(jù)墻的最大長度求出x的取值范圍;(1)根據(jù)(1)所求的關(guān)系式把S=2代入即可求出x,即AB;(3)根據(jù)二次函數(shù)的性質(zhì)及x的取值范圍求出即可.【詳解】解:(1)根據(jù)題意,得S=x(14﹣3x),即所求的函數(shù)解析式為:S=﹣3x1+14x,又∵0<14﹣3x≤10,∴;(1)根據(jù)題意,設(shè)花圃寬AB為xm,則長為(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x=3或5,當(dāng)x=3時(shí),長=14﹣9=15>10不成立,當(dāng)x=5時(shí),長=14﹣15=9<10成立,∴AB長為5m;(3)S=14x﹣3x1=﹣3(x﹣4)1+48∵墻的最大可用長度為10m,0≤14﹣3x≤10,∴,∵對稱軸x=4,開口向下,∴當(dāng)x=m,有最大面積的花圃.【點(diǎn)睛】二次函數(shù)在實(shí)際生活中的應(yīng)用是本題的考點(diǎn),根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程是解題的關(guān)鍵.22、(1)證明見解析;(2)15.【解析】

(1)先連接OD,根據(jù)圓周角定理求出∠ADB=90°,根據(jù)直角三角形斜邊上中線性質(zhì)求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根據(jù)切線的判定推出即可.

(2)首先證明AC=2DE=20,在Rt△ADC中,DC=12,設(shè)BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解決問題.【詳解】(1)證明:連結(jié)OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切線;(2)連結(jié)CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直徑,∠ACB=90°.∴EC是⊙O的切線.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC=設(shè)BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC=.【點(diǎn)睛】考查切線的性質(zhì)、勾股定理、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活綜合運(yùn)用所學(xué)知識解決問題.23、(1)如圖所示見解析,(2)當(dāng)半徑為6時(shí),該正六邊形的面積為【解析】試題分析:(1)先畫一半徑為a的圓,再作所畫圓的六等分點(diǎn),如圖所示,連接所得六等分點(diǎn),作出兩個(gè)等邊三角形即可;(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點(diǎn)E,由已知條件先求出AB和OE的長,再求出CD的長,即可求得△OCD的面積,這樣即可由S陰影=6S△OCD求出陰影部分的面積了.試題解析:(1)所作圖形如下圖所示:(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點(diǎn)E,則由題意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三邊三角形,∴∠ABO=30°,BC=OC=CD=AD,∴BE=OB·cos30°=,OE=3,∴AB=,∴CD=,∴S△OCD=,∴S陰影=6S△OCD=.24、(1)詳見解析;(2)【解析】

(1)根據(jù)題意平分可得,從而證明即可解答(2)由(1)可知,再根據(jù)四邊形是平行四邊形可得,過點(diǎn)作延長線于點(diǎn),再根據(jù)勾股定理即可解答【詳解】(1)證明:平分又又(2)四邊形是平行四邊形,為等邊三角形過點(diǎn)作延長線于點(diǎn).在中,【點(diǎn)睛】此題考查三角形全等的判定與性質(zhì),勾股定理,平行四邊形的性質(zhì),解題關(guān)鍵在于作好輔助線25、景點(diǎn)A與B之間的距離大約為280米【解析】

由已知作PC⊥AB于C,可得△ABP中∠A=37°,∠B=45°且PA=200m,要求AB的長,可以先求出AC和BC的長.【詳解】解:如圖,作PC⊥AB于C,則∠ACP=∠BCP=90°,由題意,可得∠A=37°,∠B=45°,PA=200m.在Rt△ACP中,∵∠ACP=90°,∠A=37°,∴AC=AP?cosA=200×0.80=160,PC=AP?sinA=200×0.60=1.在Rt△BPC中,∵∠BCP=90°,∠B=45°,∴BC=PC=1.∴AB=AC+BC=160+1=280(米).答:景點(diǎn)A與B之間的距離大約為280米.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用-方向角問題,對于解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.26、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解析】

(1)由點(diǎn)A、B坐標(biāo)利用待定系數(shù)法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點(diǎn)G,證△GAB∽△OAC得=,據(jù)此知BG=2AG.在Rt△ABG中根據(jù)BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據(jù)正切函數(shù)定義可得答案;(2)作BH⊥CD于點(diǎn)H,交CP于點(diǎn)K,連接AK,易得四邊形OBHC是正方形,應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據(jù)此求得點(diǎn)K(1,).待定系數(shù)法求出直線CK的解析式為y=-x+1.設(shè)點(diǎn)P的坐標(biāo)為(x,y)知x是方程x2-3x+1=-x+1的一個(gè)解.解之求得x的值即可得出答案;(3)先求出點(diǎn)D坐標(biāo)為(6,1),設(shè)P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當(dāng)1<m<6時(shí),由△OAN∽△HAP知=.據(jù)此得ON=m-1.再證△ONQ∽△HMQ得=.據(jù)此求得OQ=m-1.從而得出AQ=DM=6-m.結(jié)合AQ∥DM可得答案.②當(dāng)m>6時(shí),同理可得.【詳解】解:(1)將點(diǎn)A(2,0)和點(diǎn)B(1,0)分別代入y=ax2+bx+1,得,解得:;∴該拋物線的解析式為y=x2﹣3x+1,過點(diǎn)B作BG⊥CA,交CA的延長線于點(diǎn)G(如圖1所示),則∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論