2023-2024學(xué)年廣東省惠州市惠陽區(qū)中考二模數(shù)學(xué)試題含解析_第1頁
2023-2024學(xué)年廣東省惠州市惠陽區(qū)中考二模數(shù)學(xué)試題含解析_第2頁
2023-2024學(xué)年廣東省惠州市惠陽區(qū)中考二模數(shù)學(xué)試題含解析_第3頁
2023-2024學(xué)年廣東省惠州市惠陽區(qū)中考二模數(shù)學(xué)試題含解析_第4頁
2023-2024學(xué)年廣東省惠州市惠陽區(qū)中考二模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年廣東省惠州市惠陽區(qū)中考二模數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列大學(xué)的校徽圖案是軸對稱圖形的是()A. B. C. D.2.在⊙O中,已知半徑為5,弦AB的長為8,則圓心O到AB的距離為()A.3 B.4 C.5 D.63.一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),它們離甲地的路程y(km)與客車行駛時間x(h)間的函數(shù)關(guān)系如圖,下列信息:(1)出租車的速度為100千米/時;(2)客車的速度為60千米/時;(3)兩車相遇時,客車行駛了3.75小時;(4)相遇時,出租車離甲地的路程為225千米.其中正確的個數(shù)有()A.1個 B.2個 C.3個 D.4個4.港珠澳大橋是連接香港、珠海、澳門的超大型跨海通道,全長約55000米,把55000用科學(xué)記數(shù)法表示為()A.55×103 B.5.5×104 C.5.5×105 D.0.55×1055.如圖,已知△ABC,AB=AC,將△ABC沿邊BC翻轉(zhuǎn),得到的△DBC與原△ABC拼成四邊形ABDC,則能直接判定四邊形ABDC是菱形的依據(jù)是()A.四條邊相等的四邊形是菱形 B.一組鄰邊相等的平行四邊形是菱形C.對角線互相垂直的平行四邊形是菱形 D.對角線互相垂直平分的四邊形是菱形6.已知正比例函數(shù)的圖象經(jīng)過點,則此正比例函數(shù)的關(guān)系式為().A. B. C. D.7.如圖,實數(shù)﹣3、x、3、y在數(shù)軸上的對應(yīng)點分別為M、N、P、Q,這四個數(shù)中絕對值最小的數(shù)對應(yīng)的點是()A.點M B.點N C.點P D.點Q8.提出“金山銀山,不如綠水青山”,國家環(huán)保部大力治理環(huán)境污染,空氣質(zhì)量明顯好轉(zhuǎn),將惠及13.75億中國人,這個數(shù)字用科學(xué)記數(shù)法表示為()A.13.75×106B.13.75×105C.1.375×108D.1.375×1099.已知拋物線y=ax2+bx+c與x軸交于點A和點B,頂點為P,若△ABP組成的三角形恰為等腰直角三角形,則b2﹣4ac的值為()A.1 B.4 C.8 D.1210.已知正方形ABCD的邊長為4cm,動點P從A出發(fā),沿AD邊以1cm/s的速度運動,動點Q從B出發(fā),沿BC,CD邊以2cm/s的速度運動,點P,Q同時出發(fā),運動到點D均停止運動,設(shè)運動時間為x(秒),△BPQ的面積為y(cm2),則y與x之間的函數(shù)圖象大致是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△PAB中,PA=PB,M、N、K分別是PA,PB,AB上的點,且AM=BK,BN=AK.若∠MKN=40°,則∠P的度數(shù)為___12.如圖,在矩形ABCD中,E是AD邊的中點,,垂足為點F,連接DF,分析下列四個結(jié)論:∽;;;其中正確的結(jié)論有______.13.如圖,在5×5的正方形(每個小正方形的邊長為1)網(wǎng)格中,格點上有A、B、C、D、E五個點,如果要求連接兩個點之后線段的長度大于3且小于4,則可以連接_____.(寫出一個答案即可)14.如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論:①∠EAF=45°;②△AED≌△AEF;③△ABE∽△ACD;④BE1+DC1=DE1.其中正確的是______.(填序號)15.A、B兩地相距20km,甲乙兩人沿同一條路線從A地到B地.甲先出發(fā),勻速行駛,甲出發(fā)1小時后乙再出發(fā),乙以2km/h的速度度勻速行駛1小時后提高速度并繼續(xù)勻速行駛,結(jié)果比甲提前到達.甲、乙兩人離開A地的距離y(km)與時間t(h)的關(guān)系如圖所示,則甲出發(fā)_____小時后和乙相遇.16.點P的坐標(biāo)是(a,b),從-2,-1,0,1,2這五個數(shù)中任取一個數(shù)作為a的值,再從余下的四個數(shù)中任取一個數(shù)作為b的值,則點P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的概率是.17.如圖,在Rt△ABC中,∠B=90°,∠A=45°,BC=4,以BC為直徑的⊙O與AC相交于點O,則陰影部分的面積為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知點B、E、C、F在一條直線上,AB=DF,AC=DE,∠A=∠D求證:AC∥DE;若BF=13,EC=5,求BC的長.19.(5分)如圖,已知,,.求證:.20.(8分)如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A、B、C均在格點上.(I)AC的長等于_____.(II)若AC邊與網(wǎng)格線的交點為P,請找出兩條過點P的直線來三等分△ABC的面積.請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出這兩條直線,并簡要說明這兩條直線的位置是如何找到的_____(不要求證明).21.(10分)某養(yǎng)雞場有2500只雞準(zhǔn)備對外出售.從中隨機抽取了一部分雞,根據(jù)它們的質(zhì)量(單位:),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:(Ⅰ)圖①中的值為;(Ⅱ)求統(tǒng)計的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(Ⅲ)根據(jù)樣本數(shù)據(jù),估計這2500只雞中,質(zhì)量為的約有多少只?22.(10分)經(jīng)過校園某路口的行人,可能左轉(zhuǎn),也可能直行或右轉(zhuǎn).假設(shè)這三種可能性相同,現(xiàn)有小明和小亮兩人經(jīng)過該路口,請用列表法或畫樹狀圖法,求兩人之中至少有一人直行的概率.23.(12分)如圖,拋物線y=ax2+bx+c與x軸相交于點A(﹣3,0),B(1,0),與y軸相交于(0,﹣),頂點為P.(1)求拋物線解析式;(2)在拋物線是否存在點E,使△ABP的面積等于△ABE的面積?若存在,求出符合條件的點E的坐標(biāo);若不存在,請說明理由;(3)坐標(biāo)平面內(nèi)是否存在點F,使得以A、B、P、F為頂點的四邊形為平行四邊形?直接寫出所有符合條件的點F的坐標(biāo),并求出平行四邊形的面積.24.(14分)某中學(xué)為開拓學(xué)生視野,開展“課外讀書周”活動,活動后期隨機調(diào)查了九年級部分學(xué)生一周的課外閱讀時間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖的信息回答下列問題:(1)本次調(diào)查的學(xué)生總數(shù)為_____人,被調(diào)查學(xué)生的課外閱讀時間的中位數(shù)是_____小時,眾數(shù)是_____小時;并補全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,課外閱讀時間為5小時的扇形的圓心角度數(shù)是_____;(3)若全校九年級共有學(xué)生800人,估計九年級一周課外閱讀時間為6小時的學(xué)生有多少人?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項錯誤;

B、是軸對稱圖形,故本選項正確;

C、不是軸對稱圖形,故本選項錯誤;

D、不是軸對稱圖形,故本選項錯誤.

故選:B.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.2、A【解析】解:作OC⊥AB于C,連結(jié)OA,如圖.∵OC⊥AB,∴AC=BC=AB=×8=1.在Rt△AOC中,OA=5,∴OC=,即圓心O到AB的距離為2.故選A.3、D【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以判斷各個小題是否正確,從而可以解答本題.【詳解】由圖象可得,出租車的速度為:600÷6=100千米/時,故(1)正確,客車的速度為:600÷10=60千米/時,故(2)正確,兩車相遇時,客車行駛時間為:600÷(100+60)=3.75(小時),故(3)正確,相遇時,出租車離甲地的路程為:60×3.75=225千米,故(4)正確,故選D.【點睛】本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.4、B【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】55000是5位整數(shù),小數(shù)點向左移動4位后所得的數(shù)即可滿足科學(xué)記數(shù)法的要求,由此可知10的指數(shù)為4,所以,55000用科學(xué)記數(shù)法表示為5.5×104,故選B.【點睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.5、A【解析】

根據(jù)翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根據(jù)菱形的判定推出即可.【詳解】∵

△ABC

延底邊

BC

翻折得到

△DBC

,∴AB=BD

,

AC=CD

,∵AB=AC

,∴AB=BD=CD=AC

,∴

四邊形

ABDC

是菱形;故選A.【點睛】本題考查了菱形的判定方法:四邊都相等的四邊形是菱形;對角線互相垂直的平行四邊形是菱形;有一組鄰邊相等的平行四邊形是菱形.6、A【解析】

根據(jù)待定系數(shù)法即可求得.【詳解】解:∵正比例函數(shù)y=kx的圖象經(jīng)過點(1,﹣3),∴﹣3=k,即k=﹣3,∴該正比例函數(shù)的解析式為:y=﹣3x.故選A.【點睛】此類題目需靈活運用待定系數(shù)法建立函數(shù)解析式,然后將點的坐標(biāo)代入解析式,利用方程解決問題.7、D【解析】∵實數(shù)-3,x,3,y在數(shù)軸上的對應(yīng)點分別為M、N、P、Q,

∴原點在點M與N之間,

∴這四個數(shù)中絕對值最大的數(shù)對應(yīng)的點是點Q.

故選D.8、D【解析】

用科學(xué)記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】13.75億=1.375×109.故答案選D.【點睛】本題考查的知識點是科學(xué)記數(shù)法,解題的關(guān)鍵是熟練的掌握科學(xué)記數(shù)法.9、B【解析】

設(shè)拋物線與x軸的兩交點A、B坐標(biāo)分別為(x1,0),(x2,0),利用二次函數(shù)的性質(zhì)得到P(-,),利用x1、x2為方程ax2+bx+c=0的兩根得到x1+x2=-,x1?x2=,則利用完全平方公式變形得到AB=|x1-x2|=,接著根據(jù)等腰直角三角形的性質(zhì)得到||=?,然后進行化簡可得到b2-1ac的值.【詳解】設(shè)拋物線與x軸的兩交點A、B坐標(biāo)分別為(x1,0),(x2,0),頂點P的坐標(biāo)為(-,),則x1、x2為方程ax2+bx+c=0的兩根,∴x1+x2=-,x1?x2=,∴AB=|x1-x2|====,∵△ABP組成的三角形恰為等腰直角三角形,

∴||=?,=,∴b2-1ac=1.故選B.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì)和等腰直角三角形的性質(zhì).10、B【解析】

根據(jù)題意,Q點分別在BC、CD上運動時,形成不同的三角形,分別用x表示即可.【詳解】(1)當(dāng)0≤x≤2時,BQ=2x當(dāng)2≤x≤4時,如下圖由上可知故選:B.【點睛】本題是雙動點問題,解答時要注意討論動點在臨界兩側(cè)時形成的不同圖形,并要根據(jù)圖形列出函數(shù)關(guān)系式.二、填空題(共7小題,每小題3分,滿分21分)11、100°【解析】

由條件可證明△AMK≌△BKN,再結(jié)合外角的性質(zhì)可求得∠A=∠MKN,再利用三角形內(nèi)角和可求得∠P.【詳解】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN(SAS),∴∠AMK=∠BKN,∵∠A+∠AMK=∠MKN+∠BKN,∴∠A=∠MKN=40°,∴∠P=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,故答案為100°【點睛】本題主要考查全等三角形的判定和性質(zhì)及三角形內(nèi)角和定理,利用條件證得△AMK≌△BKN是解題的關(guān)鍵.12、【解析】

①證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②由AD∥BC,推出△AEF∽△CBF,得到,由AE=AD=BC,得到,即CF=2AF;③作DM∥EB交BC于M,交AC于N,證明DM垂直平分CF,即可證明;④設(shè)AE=a,AB=b,則AD=2a,根據(jù)△BAE∽△ADC,得到,即b=a,可得tan∠CAD=.【詳解】如圖,過D作DM∥BE交AC于N,∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于點F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,即CF=2AF,∴CF=2AF,故②正確;作DM∥EB交BC于M,交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設(shè)AE=a,AB=b,則AD=2a,由△BAE∽△ADC,∴,即b=a,∴tan∠CAD=,故④錯誤;故答案為:①②③.【點睛】本題主要考查了相似三角形的判定和性質(zhì),矩形的性質(zhì),圖形面積的計算以及解直角三角形的綜合應(yīng)用,正確的作出輔助線構(gòu)造平行四邊形是解題的關(guān)鍵.13、答案不唯一,如:AD【解析】

根據(jù)勾股定理求出,根據(jù)無理數(shù)的估算方法解答即可.【詳解】由勾股定理得:,.故答案為答案不唯一,如:AD.【點睛】本題考查了無理數(shù)的估算和勾股定理,如果直角三角形的兩條直角邊長分別是,,斜邊長為,那么.14、①②④【解析】

①根據(jù)旋轉(zhuǎn)得到,對應(yīng)角∠CAD=∠BAF,由∠EAF=∠BAF+∠BAE=∠CAD+∠BAE即可判斷②由旋轉(zhuǎn)得出AD=AF,∠DAE=∠EAF,及公共邊即可證明③在△ABE∽△ACD中,只有AB=AC、∠ABE=∠ACD=45°兩個條件,無法證明④先由△ACD≌△ABF,得出∠ACD=∠ABF=45°,進而得出∠EBF=90°,然后在Rt△BEF中,運用勾股定理得出BE1+BF1=EF1,等量代換后判定④正確【詳解】由旋轉(zhuǎn),可知:∠CAD=∠BAF.∵∠BAC=90°,∠DAE=45°,∴∠CAD+∠BAE=45°,∴∠BAF+∠BAE=∠EAF=45°,結(jié)論①正確;②由旋轉(zhuǎn),可知:AD=AF在△AED和△AEF中,∴△AED≌△AEF(SAS),結(jié)論②正確;③在△ABE∽△ACD中,只有AB=AC,、∠ABE=∠ACD=45°兩個條件,無法證出△ABE∽△ACD,結(jié)論③錯誤;④由旋轉(zhuǎn),可知:CD=BF,∠ACD=∠ABF=45°,∴∠EBF=∠ABE+∠ABF=90°,∴BF1+BE1=EF1.∵△AED≌△AEF,EF=DE,又∵CD=BF,∴BE1+DC1=DE1,結(jié)論④正確.故答案為:①②④【點睛】本題考查了相似三角形的判定,全等三角形的判定與性質(zhì),勾股定理,熟練掌握定理是解題的關(guān)鍵15、【解析】

由圖象得出解析式后聯(lián)立方程組解答即可.【詳解】由圖象可得:y甲=4t(0≤t≤5);y乙=;由方程組,解得t=.故答案為.【點睛】此題考查一次函數(shù)的應(yīng)用,關(guān)鍵是由圖象得出解析式解答.16、【解析】畫樹狀圖為:共有20種等可能的結(jié)果數(shù),其中點P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的結(jié)果數(shù)為4,所以點P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的概率==.故答案為.17、6﹣π【解析】

連接、,根據(jù)陰影部分的面積計算.【詳解】連接、,,,,,為的直徑,,,,,,陰影部分的面積.故答案為.【點睛】本題考查的是扇形面積計算,掌握直角三角形的性質(zhì)、扇形面積公式是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)4.【解析】

(1)首先證明△ABC≌△DFE可得∠ACE=∠DEF,進而可得AC∥DE;(2)根據(jù)△ABC≌△DFE可得BC=EF,利用等式的性質(zhì)可得EB=CF,再由BF=13,EC=5進而可得EB的長,然后可得答案.【詳解】解:(1)在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.【點睛】考點:全等三角形的判定與性質(zhì).19、證明見解析.【解析】

根據(jù)等式的基本性質(zhì)可得,然后利用SAS即可證出,從而證出結(jié)論.【詳解】證明:,,即,在和中,,,.【點睛】此題考查的是全等三角形的判定及性質(zhì),掌握利用SAS判定兩個三角形全等和全等三角形的對應(yīng)邊相等是解決此題的關(guān)鍵.20、作a∥b∥c∥d,可得交點P與P′【解析】

(1)根據(jù)勾股定理計算即可;(2)利用平行線等分線段定理即可解決問題.【詳解】(I)AC==,故答案為:;(II)如圖直線l1,直線l2即為所求;

理由:∵a∥b∥c∥d,且a與b,b與c,c與d之間的距離相等,∴CP=PP′=P′A,∴S△BCP=S△ABP′=S△ABC.故答案為作a∥b∥c∥d,可得交點P與P′.【點睛】本題考查作圖-應(yīng)用與設(shè)計,勾股定理,平行線等分線段定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.21、(Ⅰ)28.(Ⅱ)平均數(shù)是1.52.眾數(shù)為1.8.中位數(shù)為1.5.(Ⅲ)200只.【解析】分析:(Ⅰ)用整體1減去所有已知的百分比即可求出m的值;(Ⅱ)根據(jù)眾數(shù)、中位數(shù)、加權(quán)平均數(shù)的定義計算即可;(Ⅲ)用總數(shù)乘以樣本中2.0kg的雞所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)觀察條形統(tǒng)計圖,∵,∴這組數(shù)據(jù)的平均數(shù)是1.52.∵在這組數(shù)據(jù)中,1.8出現(xiàn)了16次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為1.8.∵將這組數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個數(shù)都是1.5,有,∴這組數(shù)據(jù)的中位數(shù)為1.5.(Ⅲ)∵在所抽取的樣本中,質(zhì)量為的數(shù)量占.∴由樣本數(shù)據(jù),估計這2500只雞中,質(zhì)量為的數(shù)量約占.有.∴這2500只雞中,質(zhì)量為的約有200只.點睛:此題主要考查了平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計意義以及利用樣本估計總體等知識.找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).22、兩人之中至少有一人直行的概率為.【解析】【分析】畫樹狀圖展示所有9種等可能的結(jié)果數(shù),找出“至少有一人直行”的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有9種等可能的結(jié)果數(shù),其中兩人之中至少有一人直行的結(jié)果數(shù)為5,所以兩人之中至少有一人直行的概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.概率=所求情況數(shù)與總情況數(shù)之比.23、(1)y=x2+x﹣(2)存在,(﹣1﹣2,2)或(﹣1+2,2)(3)點F的坐標(biāo)為(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四邊形的面積為1【解析】

(1)設(shè)拋物線解析式為y=ax2+bx+c,把(﹣3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根據(jù)拋物線解析式可知頂點P的坐標(biāo),由兩個三角形的底相同可得要使兩個三角形面積相等則高相等,根據(jù)P點坐標(biāo)可知E點縱坐標(biāo),代入解析式求出x的值即可;(3)分別討論AB為邊、AB為對角線兩種情況求出F點坐標(biāo)并求出面積即可;【詳解】(1)設(shè)拋物線解析式為y=ax2+bx+c,將(﹣3,0),(1,0),(0,)代入拋物線解析式得,解得:a=,b=1,c=﹣∴拋物線解析式:y=x2+x﹣(2)存在.∵y=x2+x﹣=(x+1)2﹣2∴P點坐標(biāo)為(﹣1,﹣2)∵△ABP的面積等于△ABE的面積,∴點E到AB的距離等于2,設(shè)E(a,2),∴a2+a﹣=2解得a1=﹣1﹣2,a2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論