版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.關于函數(shù)在區(qū)間的單調(diào)性,下列敘述正確的是()A.單調(diào)遞增 B.單調(diào)遞減 C.先遞減后遞增 D.先遞增后遞減2.已知為定義在上的奇函數(shù),若當時,(為實數(shù)),則關于的不等式的解集是()A. B. C. D.3.已知在中,角的對邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.4.本次模擬考試結(jié)束后,班級要排一張語文、數(shù)學、英語、物理、化學、生物六科試卷講評順序表,若化學排在生物前面,數(shù)學與物理不相鄰且都不排在最后,則不同的排表方法共有()A.72種 B.144種 C.288種 D.360種5.某工廠利用隨機數(shù)表示對生產(chǎn)的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,……,599,600.從中抽取60個樣本,下圖提供隨機數(shù)表的第4行到第6行:若從表中第6行第6列開始向右讀取數(shù)據(jù),則得到的第6個樣本編號是()A.324 B.522 C.535 D.5786.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個發(fā)彩色光的小燈泡且在背面用導線相連(弧的兩端各一個,導線接頭忽略不計),已知扇形的半徑為30厘米,則連接導線最小大致需要的長度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米7.已知向量,,若,則()A. B. C. D.8.設函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結(jié)論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)9.二項式展開式中,項的系數(shù)為()A. B. C. D.10.過點的直線與曲線交于兩點,若,則直線的斜率為()A. B.C.或 D.或11.為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點,若,且,則雙曲線的離心率為()A. B. C. D.12.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,且,則________.14.執(zhí)行如圖所示的偽代碼,若輸出的y的值為13,則輸入的x的值是_______.15.已知等差數(shù)列的前n項和為Sn,若,則____.16.已知,如果函數(shù)有三個零點,則實數(shù)的取值范圍是____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知首項為2的數(shù)列滿足.(1)證明:數(shù)列是等差數(shù)列.(2)令,求數(shù)列的前項和.18.(12分)已知函數(shù)(其中是自然對數(shù)的底數(shù))(1)若在R上單調(diào)遞增,求正數(shù)a的取值范圍;(2)若f(x)在處導數(shù)相等,證明:;(3)當時,證明:對于任意,若,則直線與曲線有唯一公共點(注:當時,直線與曲線的交點在y軸兩側(cè)).19.(12分)已知拋物線的準線過橢圓C:(a>b>0)的左焦點F,且點F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標準方程;(2)過點F做直線與橢圓C交于A,B兩點,P是AB的中點,線段AB的中垂線交直線l于點Q.若,求直線AB的方程.20.(12分)設函數(shù)().(1)討論函數(shù)的單調(diào)性;(2)若關于x的方程有唯一的實數(shù)解,求a的取值范圍.21.(12分)已知都是大于零的實數(shù).(1)證明;(2)若,證明.22.(10分)2018年9月,臺風“山竹”在我國多個省市登陸,造成直接經(jīng)濟損失達52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風中造成的直接經(jīng)濟損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);(2)臺風后該青年志愿者與當?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機抽取2戶進行重點幫扶,設抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
先用誘導公式得,再根據(jù)函數(shù)圖像平移的方法求解即可.【詳解】函數(shù)的圖象可由向左平移個單位得到,如圖所示,在上先遞減后遞增.故選:C【點睛】本題考查三角函數(shù)的平移與單調(diào)性的求解.屬于基礎題.2.A【解析】
先根據(jù)奇函數(shù)求出m的值,然后結(jié)合單調(diào)性求解不等式.【詳解】據(jù)題意,得,得,所以當時,.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.【點睛】本題主要考查函數(shù)的性質(zhì)應用,側(cè)重考查數(shù)學抽象和數(shù)學運算的核心素養(yǎng).3.C【解析】
求出導函數(shù),由有不等的兩實根,即可得不等關系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【詳解】,.若存在極值,則,又.又.故選:C.【點睛】本題考查導數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關鍵.4.B【解析】
利用分步計數(shù)原理結(jié)合排列求解即可【詳解】第一步排語文,英語,化學,生物4種,且化學排在生物前面,有種排法;第二步將數(shù)學和物理插入前4科除最后位置外的4個空擋中的2個,有種排法,所以不同的排表方法共有種.選.【點睛】本題考查排列的應用,不相鄰采用插空法求解,準確分步是關鍵,是基礎題5.D【解析】
因為要對600個零件進行編號,所以編號必須是三位數(shù),因此按要求從第6行第6列開始向右讀取數(shù)據(jù),大于600的,重復出現(xiàn)的舍去,直至得到第六個編號.【詳解】從第6行第6列開始向右讀取數(shù)據(jù),編號內(nèi)的數(shù)據(jù)依次為:,因為535重復出現(xiàn),所以符合要求的數(shù)據(jù)依次為,故第6個數(shù)據(jù)為578.選D.【點睛】本題考查了隨機數(shù)表表的應用,正確掌握隨機數(shù)表法的使用方法是解題的關鍵.6.B【解析】
由于實際問題中扇形弧長較小,可將導線的長視為扇形弧長,利用弧長公式計算即可.【詳解】因為弧長比較短的情況下分成6等分,所以每部分的弦長和弧長相差很小,可以用弧長近似代替弦長,故導線長度約為63(厘米).故選:B.【點睛】本題主要考查了扇形弧長的計算,屬于容易題.7.A【解析】
利用平面向量平行的坐標條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標運算,屬于基礎題.8.C【解析】
根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結(jié)論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯誤,為偶函數(shù),故錯誤,是奇函數(shù),故正確.為偶函數(shù),故錯誤,故選:.【點睛】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關鍵.9.D【解析】
寫出二項式的通項公式,再分析的系數(shù)求解即可.【詳解】二項式展開式的通項為,令,得,故項的系數(shù)為.故選:D【點睛】本題主要考查了二項式定理的運算,屬于基礎題.10.A【解析】
利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結(jié)合,求得直線的傾斜角為,進而求得的斜率.【詳解】曲線為圓的上半部分,圓心為,半徑為.設與曲線相切于點,則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A【點睛】本小題主要考查直線和圓的位置關系,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于中檔題.11.D【解析】
過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結(jié)合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設該雙曲線的右焦點為,連接.,.,,,為的中點,,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點睛】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.12.B【解析】
由題中垂直關系,可得漸近線的方程,結(jié)合,構造齊次關系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B【點睛】本題考查了雙曲線的漸近線和離心率,考查了學生綜合分析,概念理解,數(shù)學運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)垂直向量的坐標表示可得出關于實數(shù)的等式,即可求得實數(shù)的值.【詳解】,且,則,解得.故答案為:.【點睛】本題考查利用向量垂直求參數(shù),涉及垂直向量的坐標表示,考查計算能力,屬于基礎題.14.8【解析】
根據(jù)偽代碼逆向運算求得結(jié)果.【詳解】輸入,若,則,不合題意若,則,滿足題意本題正確結(jié)果:【點睛】本題考查算法中的語言,屬于基礎題.15.【解析】
由,,成等差數(shù)列,代入可得的值.【詳解】解:由等差數(shù)列的性質(zhì)可得:,,成等差數(shù)列,可得:,代入,可得:,故答案為:.【點睛】本題主要考查等差數(shù)列前n項和的性質(zhì),相對不難.16.【解析】
首先把零點問題轉(zhuǎn)化為方程問題,等價于有三個零點,兩側(cè)開方,可得,即有三個零點,再運用函數(shù)的單調(diào)性結(jié)合最值即可求出參數(shù)的取值范圍.【詳解】若函數(shù)有三個零點,即零點有,顯然,則有,可得,即有三個零點,不妨令,對于,函數(shù)單調(diào)遞增,,,所以函數(shù)在區(qū)間上只有一解,對于函數(shù),,解得,,解得,,解得,所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,,當時,,當時,,此時函數(shù)若有兩個零點,則有,綜上可知,若函數(shù)有三個零點,則實數(shù)的取值范圍是.故答案為:【點睛】本題考查了函數(shù)零點的零點,恰當?shù)拈_方,轉(zhuǎn)化為函數(shù)有零點問題,注意恰有三個零點條件的應用,根據(jù)函數(shù)的最值求解參數(shù)的范圍,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】
(1)由原式可得,等式兩端同時除以,可得到,即可證明結(jié)論;(2)由(1)可求得的表達式,進而可求得的表達式,然后求出的前項和即可.【詳解】(1)證明:因為,所以,所以,從而,因為,所以,故數(shù)列是首項為1,公差為1的等差數(shù)列.(2)由(1)可知,則,因為,所以,則.【點睛】本題考查了等差數(shù)列的證明,考查了等差數(shù)列及等比數(shù)列的前項和公式的應用,考查了學生的計算求解能力,屬于中檔題.18.(1);(2)見解析;(3)見解析【解析】
(1)需滿足恒成立,只需即可;(2)根據(jù)的單調(diào)性,構造新函數(shù),并令,根據(jù)的單調(diào)性即可得證;(3)將問題轉(zhuǎn)化為證明有唯一實數(shù)解,對求導,判斷其單調(diào)性,結(jié)合題目條件與不等式的放縮,即可得證.【詳解】;令,則恒成立;,;的取值范圍是;(2)證明:由(1)知,在上單調(diào)遞減,在上單調(diào)遞增;;令,;則;令,則;;;(3)證明:,,要證明有唯一實數(shù)解;當時,;當時,;即對于任意實數(shù),一定有解;;當時,有兩個極值點;函數(shù)在,,上單調(diào)遞增,在上單調(diào)遞減;又;只需,在時恒成立;只需;令,其中一個正解是;,;單調(diào)遞增,,(1);;;綜上得證.【點睛】本題考查了利用導數(shù)研究函數(shù)的單調(diào)性,考查了利用導數(shù)證明不等式,考查了轉(zhuǎn)化思想、不等式的放縮,屬難題.19.(1);(2)或.【解析】
(1)由拋物線的準線方程求出的值,確定左焦點坐標,再由點F到直線l:的距離為4,求出即可;(2)設直線方程,與橢圓方程聯(lián)立,運用根與系數(shù)關系和弦長公式,以及兩直線垂直的條件和中點坐標公式,即可得到所求直線的方程.【詳解】(1)拋物線的準線方程為,,直線,點F到直線l的距離為,,所以橢圓的標準方程為;(2)依題意斜率不為0,又過點,設方程為,聯(lián)立,消去得,,,設,,,,線段AB的中垂線交直線l于點Q,所以橫坐標為3,,,,平方整理得,解得或(舍去),,所求的直線方程為或.【點睛】本題考查橢圓的方程以及直線與橢圓的位置關系,要熟練應用根與系數(shù)關系、相交弦長公式,合理運用兩點間的距離公式,考查計算求解能力,屬于中檔題.20.(1)當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【解析】
(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標準,若不恒成立,求解,即可得出結(jié)論;(2)有解,即,令,轉(zhuǎn)化求函數(shù)只有一個實數(shù)解,根據(jù)(1)中的結(jié)論,即可求解.【詳解】(1),當時,恒成立,當時,,綜上,當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點時,的取值范圍,由(1)得當時,在單調(diào)遞增,且,函數(shù)只有一個零點,原方程只有一個解,當時,由(1)得在出取得極小值,也是最小值,當時,,此時函數(shù)只有一個零點,原方程只有一個解,當且遞增區(qū)間時,遞減區(qū)間時;,當,有兩個零點,即原方程有兩個解,不合題意,所以的取值范圍是或.【點睛】本題考查導數(shù)的綜合應用,涉及到單調(diào)性、零點、極值最值,考查分類討論和等價轉(zhuǎn)化思想,屬于中檔題.21.(1)答案見解析.(2)答案見解析【解析】
(1)利用基本不等式可得,兩式相加即可求解.(2)由(1)知,代入不等式,利用基本不等式即可求解.【詳解】(1)兩式相加得(2)由(1)知于是,.【點睛】本題考查了基本不等式的應用,屬于基礎題.22.(1)3360元;(2)見解析【解析】
(1)根據(jù)頻率分布直方圖計算每個農(nóng)戶的平均損
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國安防電子行業(yè)市場供需趨勢發(fā)展戰(zhàn)略分析報告
- 2024年塔吊司機承包項目勞務合同3篇
- 2024-2030年中國太陽能發(fā)電系統(tǒng)設備商業(yè)計劃書
- 2024-2030年中國地面通信導航定向設備行業(yè)當前經(jīng)濟形勢及投資建議研究報告
- 茅臺學院《圖形圖像信息處理進階》2023-2024學年第一學期期末試卷
- 2024年權益保障:合同與財務制度
- 茅臺學院《電子測量原理》2023-2024學年第一學期期末試卷
- 馬鞍山師范高等??茖W校《中外基礎教育比較》2023-2024學年第一學期期末試卷
- 2024年在線教育平臺軟件定制委托開發(fā)合同2篇
- 2024三輪汽車駕駛培訓學校合作經(jīng)營協(xié)議3篇
- 2024年低壓電工復審取證考試題庫附答案(通用版)
- 新管徑流速流量對照表
- 咯血病人做介入手術后的護理
- 境外投資環(huán)境分析報告
- 《壓力平衡式旋塞閥》課件
- 物聯(lián)網(wǎng)與人工智能技術融合發(fā)展年度報告
- 婦產(chǎn)科醫(yī)生醫(yī)患溝通技巧
- 內(nèi)科學糖尿病教案
- 《高尿酸血癥》課件
- 微量泵的操作及報警處置課件查房
- 人教版小學數(shù)學四年級上冊5 1《平行與垂直》練習
評論
0/150
提交評論