2025屆安徽省江淮十校高三第三次模擬數(shù)學試題含解析_第1頁
2025屆安徽省江淮十校高三第三次模擬數(shù)學試題含解析_第2頁
2025屆安徽省江淮十校高三第三次模擬數(shù)學試題含解析_第3頁
2025屆安徽省江淮十校高三第三次模擬數(shù)學試題含解析_第4頁
2025屆安徽省江淮十校高三第三次模擬數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省江淮十校高三第三次模擬數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.根據(jù)最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關2.已知,函數(shù)在區(qū)間內沒有最值,給出下列四個結論:①在上單調遞增;②③在上沒有零點;④在上只有一個零點.其中所有正確結論的編號是()A.②④ B.①③ C.②③ D.①②④3.設,是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則4.已知集合,,則()A. B. C. D.5.設分別為雙曲線的左、右焦點,過點作圓的切線,與雙曲線的左、右兩支分別交于點,若,則雙曲線漸近線的斜率為()A. B. C. D.6.已知函數(shù)是奇函數(shù),且,若對,恒成立,則的取值范圍是()A. B. C. D.7.已知實數(shù),滿足,則的最大值等于()A.2 B. C.4 D.88.已知函數(shù),則()A.1 B.2 C.3 D.49.已知函數(shù),,若方程恰有三個不相等的實根,則的取值范圍為()A. B.C. D.10.若實數(shù)、滿足,則的最小值是()A. B. C. D.11.斜率為1的直線l與橢圓相交于A、B兩點,則的最大值為A.2 B. C. D.12.是虛數(shù)單位,則()A.1 B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列的各項均為正數(shù),,則的值為________.14.有2名老師和3名同學,將他們隨機地排成一行,用表示兩名老師之間的學生人數(shù),則對應的排法有______種;______;15.某種產品的質量指標值服從正態(tài)分布,且.某用戶購買了件這種產品,則這件產品中質量指標值位于區(qū)間之外的產品件數(shù)為_________.16.某校名學生參加軍事冬令營活動,活動期間各自扮演一名角色進行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學生,將這名學生分成組進行游戲,則新加入的學生可以扮演的角色的種數(shù)為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.18.(12分)在中,角A、B、C的對邊分別為a、b、c,且.(1)求角A的大小;(2)若,的平分線與交于點D,與的外接圓交于點E(異于點A),,求的值.19.(12分)設橢圓的右焦點為,過的直線與交于兩點,點的坐標為.(1)當直線的傾斜角為時,求線段AB的中點的橫坐標;(2)設點A關于軸的對稱點為C,求證:M,B,C三點共線;(3)設過點M的直線交橢圓于兩點,若橢圓上存在點P,使得(其中O為坐標原點),求實數(shù)的取值范圍.20.(12分)已知,,分別為內角,,的對邊,且.(1)證明:;(2)若的面積,,求角.21.(12分)已知函數(shù).(1)當時,求曲線在點的切線方程;(2)討論函數(shù)的單調性.22.(10分)已知函數(shù),.(1)當時,求不等式的解集;(2)當時,不等式恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數(shù)據(jù)中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關系數(shù)為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點分布應從左到右是上升的,則變量x與y正相關,故D正確.故選D.本題主要考查線性回歸方程的性質,意在考查學生對該知識的理解掌握水平和分析推理能力.2.A【解析】

先根據(jù)函數(shù)在區(qū)間內沒有最值求出或.再根據(jù)已知求出,判斷函數(shù)的單調性和零點情況得解.【詳解】因為函數(shù)在區(qū)間內沒有最值.所以,或解得或.又,所以.令.可得.且在上單調遞減.當時,,且,所以在上只有一個零點.所以正確結論的編號②④故選:A.本題主要考查三角函數(shù)的圖象和性質,考查函數(shù)的零點問題,意在考查學生對這些知識的理解掌握水平.3.D【解析】試題分析:,,故選D.考點:點線面的位置關系.4.D【解析】

先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.本題考查集合的交集運算,考查學生的基本運算能力,是一道容易題.5.C【解析】

如圖所示:切點為,連接,作軸于,計算,,,,根據(jù)勾股定理計算得到答案.【詳解】如圖所示:切點為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.本題考查了雙曲線的漸近線斜率,意在考查學生的計算能力和綜合應用能力.6.A【解析】

先根據(jù)函數(shù)奇偶性求得,利用導數(shù)判斷函數(shù)單調性,利用函數(shù)單調性求解不等式即可.【詳解】因為函數(shù)是奇函數(shù),所以函數(shù)是偶函數(shù).,即,又,所以,.函數(shù)的定義域為,所以,則函數(shù)在上為單調遞增函數(shù).又在上,,所以為偶函數(shù),且在上單調遞增.由,可得,對恒成立,則,對恒成立,,得,所以的取值范圍是.故選:A.本題考查利用函數(shù)單調性求解不等式,根據(jù)方程組法求函數(shù)解析式,利用導數(shù)判斷函數(shù)單調性,屬壓軸題.7.D【解析】

畫出可行域,計算出原點到可行域上的點的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點到可行域上的點的最大距離為.所以的最大值為.故選:D本小題主要考查根據(jù)可行域求非線性目標函數(shù)的最值,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.8.C【解析】

結合分段函數(shù)的解析式,先求出,進而可求出.【詳解】由題意可得,則.故選:C.本題考查了求函數(shù)的值,考查了分段函數(shù)的性質,考查運算求解能力,屬于基礎題.9.B【解析】

由題意可將方程轉化為,令,,進而將方程轉化為,即或,再利用的單調性與最值即可得到結論.【詳解】由題意知方程在上恰有三個不相等的實根,即,①.因為,①式兩邊同除以,得.所以方程有三個不等的正實根.記,,則上述方程轉化為.即,所以或.因為,當時,,所以在,上單調遞增,且時,.當時,,在上單調遞減,且時,.所以當時,取最大值,當,有一根.所以恰有兩個不相等的實根,所以.故選:B.本題考查了函數(shù)與方程的關系,考查函數(shù)的單調性與最值,轉化的數(shù)學思想,屬于中檔題.10.D【解析】

根據(jù)約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,求出最優(yōu)解的坐標,代入目標函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點,由得,平移直線,當該直線經過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.本題考查簡單的線性規(guī)劃,考查數(shù)形結合的解題思想方法,是基礎題.11.C【解析】

設出直線的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進而利用弦長公式求得|AB|的表達式,利用t的范圍求得|AB|的最大值.【詳解】解:設直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長|AB|=4.故選:C.本題主要考查了橢圓的應用,直線與橢圓的關系.常需要把直線與橢圓方程聯(lián)立,利用韋達定理,判別式找到解決問題的突破口.12.C【解析】

由復數(shù)除法的運算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.本題考查復數(shù)的除法和模,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

運用等比數(shù)列的通項公式,即可解得.【詳解】解:,,,,,,,,,,,.故答案為:.本題考查等比數(shù)列的通項公式及應用,考查計算能力,屬于基礎題.14.36;1.【解析】

的可能取值為0,1,2,3,對應的排法有:.分別求出,,,,由此能求出.【詳解】解:有2名老師和3名同學,將他們隨機地排成一行,用表示兩名老師之間的學生人數(shù),則的可能取值為0,1,2,3,對應的排法有:.∴對應的排法有36種;,,,,∴故答案為:36;1.本題考查了排列、組合的應用,離散型隨機變量的分布列以及數(shù)學期望,屬于中檔題.15.【解析】

直接計算,可得結果.【詳解】由題可知:則質量指標值位于區(qū)間之外的產品件數(shù):故答案為:本題考查正太分布中原則,審清題意,簡單計算,屬基礎題.16.【解析】

對新加入的學生所扮演的角色進行分類討論,分析各種情況下個學生所扮演的角色的分組,綜合可得出結論.【詳解】依題意,名學生分成組,則一定是個人組和個人組.①若新加入的學生是士兵,則可以將這個人分組如下;名士兵;士兵、排長、連長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學生可以是士兵,由對稱性可知也可以是司令;②若新加入的學生是排長,則可以將這個人分組如下:名士兵;連長、營長、團長各名;旅長、師長、軍長各名;名司令;名排長.所以新加入的學生可以是排長,由對稱性可知也可以是軍長;③若新加入的學生是連長,則可以將這個人分組如下:名士兵;士兵、排長、連長各名;連長、營長、團長各名;旅長、師長、軍長各名;名司令.所以新加入的學生可以是連長,由對稱性可知也可以是師長;④若新加入的學生是營長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學生可以是營長,由對稱性可知也可以是旅長;⑤若新加入的學生是團長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;旅長、師長、軍長各名;名司令;名團長.所以新加入的學生可以是團長.綜上所述,新加入學生可以扮演種角色.故答案為:.本題考查分類計數(shù)原理的應用,解答的關鍵就是對新加入的學生所扮演的角色進行分類討論,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)證明見解析;(Ⅱ)【解析】

(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標系,平面的法向量,,計算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標系,則,,,,.設平面的法向量,則,即,取得到,,設直線與平面所成角為故.本題考查了線面垂直,線面夾角,意在考查學生的空間想象能力和計算能力.18.(1);(2)【解析】

(1)由,利用正弦定理轉化整理為,再利用余弦定理求解.(2)根據(jù),利用兩角和的余弦得到,利用數(shù)形結合,設,在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因為,所以,即,即,所以.(2)∵,.所以,從而.所以,.不妨設,O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.本題主要考查平面向量的模的幾何意義,還考查了數(shù)形結合的方法,屬于中檔題.19.(1)AB的中點的橫坐標為;(2)證明見解析;(3)【解析】

設.(1)因為直線的傾斜角為,,所以直線AB的方程為,聯(lián)立方程組,消去并整理,得,則,故線段AB的中點的橫坐標為.(2)根據(jù)題意得點,若直線AB的斜率為0,則直線AB的方程為,A、C兩點重合,顯然M,B,C三點共線;若直線AB的斜率不為0,設直線AB的方程為,聯(lián)立方程組,消去并整理得,則,設直線BM、CM的斜率分別為、,則,即=,即M,B,C三點共線.(3)根據(jù)題意,得直線GH的斜率存在,設該直線的方程為,設,聯(lián)立方程組,消去并整理,得,由,整理得,又,所以,結合,得,當時,該直線為軸,即,此時橢圓上任意一點P都滿足,此時符合題意;當時,由,得,代入橢圓C的方程,得,整理,得,再結合,得到,即,綜上,得到實數(shù)的取值范圍是.20.(1)見解析;(2)【解析】

(1)利用余弦定理化簡已知條件,由此證得(2)利用正弦定理化簡(1)的結論,得到,利用三角形的面積公式列方程,由此求得,進而求得的值,從而求得角.【詳解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.本小題主要考查余弦定理、正弦定理解三角形,考查三角形的面積公式,考查化歸與轉化的數(shù)學思想方法,考查運算求解能力,屬于中檔題.21.(1);(2)當時,在上單調遞增,在上單調遞減;當時,在和上單調遞增,在上單調遞減;當時,在上單調遞增;當時,在和上單調遞增,在上單調遞減.【解析】

(1)根據(jù)導數(shù)的幾何意義求解即可.(2)易得函數(shù)定義域是,且.故分,和與四種情況,分別分析得極值點的關系進而求得原函數(shù)的單調性即可.【詳解】(1)當時,,則切線的斜率為.又,則曲線在點的切線方程是,即.(2)的定義域是..①當時,,所以當時,;當時,,所以在上單調遞增,在上單調遞減;②當時,,所以當和時,;當時,,所以在和上單調遞增,在上單調遞減;③當時,,所以在上恒

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論