版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年內(nèi)蒙古自治區(qū)鄂爾多斯市康巴什區(qū)第二中學(xué)中考考前最后一卷數(shù)學(xué)試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知一組數(shù)據(jù):12,5,9,5,14,下列說法不正確的是()A.平均數(shù)是9 B.中位數(shù)是9 C.眾數(shù)是5 D.極差是52.如圖,一把矩形直尺沿直線斷開并錯位,點E、D、B、F在同一條直線上,若∠ADE=125°,則∠DBC的度數(shù)為()A.125° B.75° C.65° D.55°3.“綠水青山就是金山銀山”.某工程隊承接了60萬平方米的荒山綠化任務(wù),為了迎接雨季的到來,實際工作時每天的工作效率比原計劃提高了25%,結(jié)果提前30天完成了這一任務(wù).設(shè)實際工作時每天綠化的面積為x萬平方米,則下面所列方程中正確的是()A. B.C. D.4.已知矩形ABCD中,AB=3,BC=4,E為BC的中點,以點B為圓心,BA的長為半徑畫圓,交BC于點F,再以點C為圓心,CE的長為半徑畫圓,交CD于點G,則S1-S2=()A.6 B. C.12﹣π D.12﹣π5.計算36÷(﹣6)的結(jié)果等于()A.﹣6 B.﹣9 C.﹣30 D.66.一次數(shù)學(xué)測試后,隨機(jī)抽取九年級某班5名學(xué)生的成績?nèi)缦拢?1,78,1,85,1.關(guān)于這組數(shù)據(jù)說法錯誤的是()A.極差是20 B.中位數(shù)是91 C.眾數(shù)是1 D.平均數(shù)是917.已知正多邊形的一個外角為36°,則該正多邊形的邊數(shù)為().A.12 B.10 C.8 D.68.如圖,在等邊三角形ABC中,點P是BC邊上一動點(不與點B、C重合),連接AP,作射線PD,使∠APD=60°,PD交AC于點D,已知AB=a,設(shè)CD=y,BP=x,則y與x函數(shù)關(guān)系的大致圖象是()A. B. C. D.9.如圖是由若干個小正方體組成的幾何體從上面看到的圖形,小正方形中的數(shù)字表示該位置小正方體的個數(shù),這個幾何體從正面看到的圖形是()A. B. C. D.10.如果一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)的圖象經(jīng)過第一、二、四象限,那么k、b應(yīng)滿足的條件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<011.如圖,在△ABC中,點D,E分別在邊AB,AC上,且AEAB=ADA.1:3B.1:2C.1:3D.12.已知關(guān)于x,y的二元一次方程組的解為,則a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.有一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,則a=_____,這組數(shù)據(jù)的方差是_____.14.計算:2sin245°﹣tan45°=______.15.如圖,矩形ABCD中,AB=3,對角線AC,BD相交于點O,AE垂直平分OB于點E,則AD的長為____________.16.因式分解a3-6a2+9a=_____.17.在平面直角坐標(biāo)系xOy中,點A、B為反比例函數(shù)(x>0)的圖象上兩點,A點的橫坐標(biāo)與B點的縱坐標(biāo)均為1,將(x>0)的圖象繞原點O順時針旋轉(zhuǎn)90°,A點的對應(yīng)點為A′,B點的對應(yīng)點為B′.此時點B′的坐標(biāo)是_____.18.若反比例函數(shù)y=﹣的圖象經(jīng)過點A(m,3),則m的值是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在航線l的兩側(cè)分別有觀測點A和B,點A到航線的距離為2km,點B位于點A北偏東60°方向且與A相距10km.現(xiàn)有一艘輪船從位于點B南偏西76°方向的C處,正沿該航線自西向東航行,5分鐘后該輪船行至點A的正北方向的D處.(1)求觀測點B到航線的距離;(2)求該輪船航行的速度(結(jié)果精確到0.1km/h).(參考數(shù)據(jù):≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)20.(6分)計算:.先化簡,再求值:,其中.21.(6分)如圖,一枚運(yùn)載火箭從距雷達(dá)站C處5km的地面O處發(fā)射,當(dāng)火箭到達(dá)點A,B時,在雷達(dá)站C處測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.求AC和AB的長(結(jié)果保留小數(shù)點后一位)(參考數(shù)據(jù):sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)22.(8分)如圖:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°求證:(1)△PAC∽△BPD;(2)若AC=3,BD=1,求CD的長.23.(8分)如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點,點A(2,5)在反比例函數(shù)的圖象上,過點A的直線y=x+b交x軸于點B.求k和b的值;求△OAB的面積.24.(10分)如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時,AD=1.求拋物線的函數(shù)表達(dá)式.當(dāng)t為何值時,矩形ABCD的周長有最大值?最大值是多少?保持t=2時的矩形ABCD不動,向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.25.(10分)如圖,正方形ABCD中,E,F(xiàn)分別為BC,CD上的點,且AE⊥BF,垂足為G.(1)求證:AE=BF;(2)若BE=,AG=2,求正方形的邊長.26.(12分)如圖(1),P為△ABC所在平面上一點,且∠APB=∠BPC=∠CPA=120°,則點P叫做△ABC的費(fèi)馬點.(1)如果點P為銳角△ABC的費(fèi)馬點,且∠ABC=60°.①求證:△ABP∽△BCP;②若PA=3,PC=4,則PB=.(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD相交于P點.如圖(2)①求∠CPD的度數(shù);②求證:P點為△ABC的費(fèi)馬點.27.(12分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D.過點D作EF⊥AC,垂足為E,且交AB的延長線于點F.求證:EF是⊙O的切線;已知AB=4,AE=1.求BF的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】分別計算該組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)及極差后即可得到正確的答案平均數(shù)為(12+5+9+5+14)÷5=9,故選項A正確;重新排列為5,5,9,12,14,∴中位數(shù)為9,故選項B正確;5出現(xiàn)了2次,最多,∴眾數(shù)是5,故選項C正確;極差為:14﹣5=9,故選項D錯誤.故選D2、D【解析】
延長CB,根據(jù)平行線的性質(zhì)求得∠1的度數(shù),則∠DBC即可求得.【詳解】延長CB,延長CB,∵AD∥CB,∴∠1=∠ADE=145°,∴∠DBC=180°?∠1=180°?125°=55°.故答案選:D.【點睛】本題考查的知識點是平行線的性質(zhì),解題的關(guān)鍵是熟練的掌握平行線的性質(zhì).3、C【解析】分析:設(shè)實際工作時每天綠化的面積為x萬平方米,根據(jù)工作時間=工作總量÷工作效率結(jié)合提前30天完成任務(wù),即可得出關(guān)于x的分式方程.詳解:設(shè)實際工作時每天綠化的面積為x萬平方米,則原來每天綠化的面積為萬平方米,依題意得:,即.故選C.點睛:考查了由實際問題抽象出分式方程.找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.4、D【解析】
根據(jù)題意可得到CE=2,然后根據(jù)S1﹣S2=S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【詳解】解:∵BC=4,E為BC的中點,∴CE=2,∴S1﹣S2=3×4﹣,故選D.【點睛】此題考查扇形面積的計算,矩形的性質(zhì)及面積的計算.5、A【解析】分析:根據(jù)有理數(shù)的除法法則計算可得.詳解:31÷(﹣1)=﹣(31÷1)=﹣1.故選A.點睛:本題主要考查了有理數(shù)的除法,解題的關(guān)鍵是掌握有理數(shù)的除法法則:兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除.2除以任何一個不等于2的數(shù),都得2.6、D【解析】
試題分析:因為極差為:1﹣78=20,所以A選項正確;從小到大排列為:78,85,91,1,1,中位數(shù)為91,所以B選項正確;因為1出現(xiàn)了兩次,最多,所以眾數(shù)是1,所以C選項正確;因為,所以D選項錯誤.故選D.考點:①眾數(shù)②中位數(shù)③平均數(shù)④極差.7、B【解析】
利用多邊形的外角和是360°,正多邊形的每個外角都是36°,即可求出答案.【詳解】解:360°÷36°=10,所以這個正多邊形是正十邊形.故選:B.【點睛】本題主要考查了多邊形的外角和定理.是需要識記的內(nèi)容.8、C【解析】
根據(jù)等邊三角形的性質(zhì)可得出∠B=∠C=60°,由等角的補(bǔ)角相等可得出∠BAP=∠CPD,進(jìn)而即可證出△ABP∽△PCD,根據(jù)相似三角形的性質(zhì)即可得出y=-x2+x,對照四個選項即可得出.【詳解】∵△ABC為等邊三角形,
∴∠B=∠C=60°,BC=AB=a,PC=a-x.
∵∠APD=60°,∠B=60°,
∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,
∴∠BAP=∠CPD,
∴△ABP∽△PCD,∴,即,∴y=-x2+x.故選C.【點睛】考查了動點問題的函數(shù)圖象、相似三角形的判定與性質(zhì),利用相似三角形的性質(zhì)找出y=-x2+x是解題的關(guān)鍵.9、C【解析】
先根據(jù)俯視圖判斷出幾何體的形狀,再根據(jù)主視圖是從正面看畫出圖形即可.【詳解】解:由俯視圖可知,幾何體共有兩排,前面一排從左到右分別是1個和2個小正方體搭成兩個長方體,
后面一排分別有2個、3個、1個小正方體搭成三個長方體,
并且這兩排右齊,故從正面看到的視圖為:.
故選:C.【點睛】本題考查幾何體三視圖,熟記三視圖的概念并判斷出物體的排列方式是解題的關(guān)鍵.10、B【解析】試題分析:∵一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)的圖象經(jīng)過第一、二、四象限,∴k<0,b>0,故選B.考點:一次函數(shù)的性質(zhì)和圖象11、C【解析】∵AEAB∴△ABC∽△AED。∴SΔ∴SΔ12、B【解析】
把代入方程組得:,解得:,所以a?2b=?2×()=2.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、51.【解析】∵一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,∴,解得,,∴=1.故答案為5,1.14、0【解析】原式==0,故答案為0.15、【解析】試題解析:∵四邊形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD=.【點睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)、線段垂直平分線的性質(zhì)、勾股定理;熟練掌握矩形的性質(zhì),證明三角形是等邊三角形是解決問題的關(guān)鍵.16、a(a-3)2【解析】
根據(jù)因式分解的方法與步驟,先提取公因式,再根據(jù)完全平方公式分解即可.【詳解】解:故答案為:.【點睛】本題考查因式分解的方法與步驟,熟練掌握方法與步驟是解答關(guān)鍵.17、(1,-4)【解析】
利用旋轉(zhuǎn)的性質(zhì)即可解決問題.【詳解】如圖,由題意A(1,4),B(4,1),A根據(jù)旋轉(zhuǎn)的性質(zhì)可知′(4,-1),B′(1,-4);
所以,B′(1,-4);故答案為(1,-4).【點睛】本題考查反比例函數(shù)的旋轉(zhuǎn)變換,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題.18、﹣2【解析】∵反比例函數(shù)的圖象過點A(m,3),∴,解得.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)觀測點到航線的距離為3km(2)該輪船航行的速度約為40.6km/h【解析】試題分析:(1)設(shè)AB與l交于點O,利用∠DAO=60°,利用∠DAO的余弦求出OA長,從而求得OB長,繼而求得BE長即可;(2)先計算出DE=EF+DF=求出DE=5,再由進(jìn)而由tan∠CBE=求出EC,即可求出CD的長,進(jìn)而求出航行速度.試題解析:(1)設(shè)AB與l交于點O,在Rt△AOD中,∵∠OAD=60°,AD=2(km),∴OA==4(km),∵AB=10(km),∴OB=AB﹣OA=6(km),在Rt△BOE中,∠OBE=∠OAD=60°,∴BE=OB?cos60°=3(km),答:觀測點B到航線l的距離為3km;(2)∵∠OAD=60°,AD=2(km),∴OD=AD·tan60°=2,∵∠BEO=90°,BO=6,BE=3,∴OE==3,∴DE=OD+OE=5(km);CE=BE?tan∠CBE=3tan76°,∴CD=CE﹣DE=3tan76°﹣5≈3.38(km),∵5(min)=(h),∴v==12CD=12×3.38≈40.6(km/h),答:該輪船航行的速度約為40.6km/h.【點睛】本題主要考查了方向角問題以及利用銳角三角函數(shù)關(guān)系得出EC,DE,DO的長是解題關(guān)鍵.20、(1)1;(2)2-1.【解析】
(1)分別計算負(fù)指數(shù)冪、絕對值、零指數(shù)冪、特殊角的三角函數(shù)值、立方根;(2)先把括號內(nèi)通分相減,再計算分式的除法,除以一個分式,等于乘它的分子、分母交換位置.【詳解】(1)原式=3+﹣1﹣2×+1﹣2=3+﹣1﹣+1﹣2=1.(2)原式=[﹣]?=?=,當(dāng)x=﹣2時,原式===2-1.【點睛】本題考查負(fù)指數(shù)冪、絕對值、零指數(shù)冪、特殊角的三角函數(shù)值、立方根以及分式的化簡求值,解題關(guān)鍵是熟練掌握以上性質(zhì)和分式的混合運(yùn)算.21、AC=6.0km,AB=1.7km;【解析】
在Rt△AOC,由∠的正切值和OC的長求出OA,在Rt△BOC,由∠BCO的大小和OC的長求出OA,而AB=OB-0A,即可得到答案。【詳解】由題意可得:∠AOC=90°,OC=5km.在Rt△AOC中,∵AC=,∴AC=≈6.0km,∵tan34°=,∴OA=OC?tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km.答:AC的長為6.0km,AB的長為1.7km.【點睛】本題主要考查三角函數(shù)的知識。22、(1)見解析;(2)6.【解析】
(1)由△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,可得∠PAB=∠PBD,∠BPD=∠PAC,從而即可證明;
(2)根據(jù)相似三角形對應(yīng)邊成比例即可求出PC=PD=3,再由勾股定理即可求解.【詳解】證明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,∴∠APC+∠BPD=45°,
又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,∴∠PAB=∠PBD,∠BPD=∠PAC,
∵∠PCA=∠PDB,∴△PAC∽△BPD;
(2)∵ACPD=PCBD,PC=PD,AC=3,BD=1
∴PC=PD=【點睛】本題考查了相似三角形的判定與性質(zhì)及等腰直角三角形,屬于基礎(chǔ)題,關(guān)鍵是掌握相似三角形的判定方法.23、(1)k=10,b=3;(2).【解析】試題分析:(1)、將A點坐標(biāo)代入反比例函數(shù)解析式和一次函數(shù)解析式分別求出k和b的值;(2)、首先根據(jù)一次函數(shù)求出點B的坐標(biāo),然后計算面積.試題解析:(1)、把x=2,y=5代入y=,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3∴當(dāng)y=0時,x=-3,∴OB=3∴S=×3×5=7.5考點:一次函數(shù)與反比例函數(shù)的綜合問題.24、(1);(2)當(dāng)t=1時,矩形ABCD的周長有最大值,最大值為;(3)拋物線向右平移的距離是1個單位.【解析】
(1)由點E的坐標(biāo)設(shè)拋物線的交點式,再把點D的坐標(biāo)(2,1)代入計算可得;
(2)由拋物線的對稱性得BE=OA=t,據(jù)此知AB=10-2t,再由x=t時AD=,根據(jù)矩形的周長公式列出函數(shù)解析式,配方成頂點式即可得;
(3)由t=2得出點A、B、C、D及對角線交點P的坐標(biāo),由直線GH平分矩形的面積知直線GH必過點P,根據(jù)AB∥CD知線段OD平移后得到的線段是GH,由線段OD的中點Q平移后的對應(yīng)點是P知PQ是△OBD中位線,據(jù)此可得.【詳解】(1)設(shè)拋物線解析式為,當(dāng)時,,點的坐標(biāo)為,將點坐標(biāo)代入解析式得,解得:,拋物線的函數(shù)表達(dá)式為;(2)由拋物線的對稱性得,,當(dāng)時,,矩形的周長,,,,當(dāng)時,矩形的周長有最大值,最大值為;(3)如圖,當(dāng)時,點、、、的坐標(biāo)分別為、、、,矩形對角線的交點的坐標(biāo)為,直線平分矩形的面積,點是和的中點,,由平移知,是的中位線,,所以拋物線向右平移的距離是1個單位.【點睛】本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)及平移變換的性質(zhì)等知識點.25、(1)見解析;(2)正方形的邊長為.【解析】
(1)由正方形的性質(zhì)得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA證得△ABE≌△BCF即可得出結(jié)論;(2)證出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG?AE,設(shè)EG=x,則AE=AG+EG=2+x,代入求出x,求得AE=3,由勾股定理即可得出結(jié)果.【詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥BF,垂足為G,∴∠CBF+∠AEB=90°,∴∠BAE=∠CBF,在△ABE與△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵四邊形ABCD為正方形,∴∠ABC=90°,∵AE⊥BF,∴∠BGE=∠ABE=90°,∵∠BEG=∠AEB,∴△BGE∽△ABE,∴=,即:BE2=EG?AE,設(shè)EG=x,則AE=AG+EG=2+x,∴()2=x?(2+x),解得:x1=1,x2=﹣3(不合題意舍去),∴AE=3,∴AB===.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理等知識,熟練掌握正方形的性質(zhì),證明三角形全等與相似是解題的關(guān)鍵.26、(1)①證明見解析;②23【解析】試題分析:(1)①根據(jù)題意,利用內(nèi)角和定理及等式性質(zhì)得到一對角相等,利用兩角相等的三角形相似即可得證;②由三角形ABP與三角形BCP相似,得比例,將PA與PC的長代入求出PB的長即可;(2)①根據(jù)三角形ABE與三角形ACD為等邊三角形,利用等邊三角形的性質(zhì)得到兩對邊相等,兩個角為60°,利用等式的性質(zhì)得到夾角相等,利用SAS得到三角形ACE與三角形ABD全等,利用全等三角形的對應(yīng)角相等得到∠1=∠2,再由對頂角相等,得到∠5=∠6,即可求出所求角度數(shù);②由三角形ADF與三角形CP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育心理學(xué)綜合練習(xí)試卷B卷附答案
- 2024年度山西省高校教師資格證之高等教育法規(guī)押題練習(xí)試題B卷含答案
- 重慶市西南大學(xué)附中2024-2025學(xué)年高一上定時檢測(一)語文試題含答案
- 2024年度xx村監(jiān)測對象風(fēng)險消除民主評議會議記錄
- 湖南省長沙市長郡郡維中學(xué)2022-2023學(xué)年九年級上學(xué)期入學(xué)英語試卷(含答案)
- 2024年長沙市事業(yè)單位招聘計算機(jī)崗位專業(yè)知識試題
- 2024年培訓(xùn)學(xué)校業(yè)務(wù)外包協(xié)議
- 2024年工程咨詢服務(wù)具體協(xié)議樣式
- 2024醫(yī)療銷售企業(yè)合作協(xié)議樣本
- 2024房屋建筑施工勞務(wù)協(xié)議詳例
- 養(yǎng)老機(jī)構(gòu)(養(yǎng)老院)全套服務(wù)管理實用手冊
- 企業(yè)文化管理第八章企業(yè)文化的比較與借鑒
- WST311-2023《醫(yī)院隔離技術(shù)標(biāo)準(zhǔn)》
- 《縷書香伴我同行》課件
- 建設(shè)項目竣工環(huán)境保護(hù)驗收管理辦法
- 100道解方程 計算題
- 賽事承辦服務(wù)投標(biāo)方案(技術(shù)方案)
- 概率論(華南農(nóng)業(yè)大學(xué))智慧樹知到課后章節(jié)答案2023年下華南農(nóng)業(yè)大學(xué)
- 上海中考英語專項練習(xí)-動詞的時態(tài)-練習(xí)卷一和參考答案
- GB 4806.7-2023食品安全國家標(biāo)準(zhǔn)食品接觸用塑料材料及制品
- 我們的出行方式 (教學(xué)設(shè)計)2022-2023學(xué)年綜合實踐活動四年級上冊 全國通用
評論
0/150
提交評論