




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024-2025學(xué)年貴州省黔西南市重點(diǎn)中學(xué)高三畢業(yè)班第二次統(tǒng)一檢測(cè)試題數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]2.若復(fù)數(shù)滿足(是虛數(shù)單位),則的虛部為()A. B. C. D.3.已知底面為正方形的四棱錐,其一條側(cè)棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的()A. B. C. D.4.已知全集,集合,,則陰影部分表示的集合是()A. B. C. D.5.《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對(duì)二人進(jìn)行了測(cè)驗(yàn),根據(jù)測(cè)驗(yàn)結(jié)果繪制了雷達(dá)圖(如圖,每項(xiàng)指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)高于乙B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.乙的六大素養(yǎng)中邏輯推理最差D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲6.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.7.框圖與程序是解決數(shù)學(xué)問題的重要手段,實(shí)際生活中的一些問題在抽象為數(shù)學(xué)模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計(jì)算一組數(shù)據(jù)的方差,設(shè)計(jì)了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應(yīng)填入()A., B. C., D.,8.已知拋物線的焦點(diǎn)為,是拋物線上兩個(gè)不同的點(diǎn),若,則線段的中點(diǎn)到軸的距離為()A.5 B.3 C. D.29.函數(shù)f(x)=lnA. B. C. D.10.已知變量的幾組取值如下表:12347若與線性相關(guān),且,則實(shí)數(shù)()A. B. C. D.11.設(shè)P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q12.甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說(shuō):“我沒抓到.”乙說(shuō):“丙抓到了.”丙說(shuō):“丁抓到了”丁說(shuō):“我沒抓到."已知他們四人中只有一人說(shuō)了真話,根據(jù)他們的說(shuō)法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),(其中e為自然對(duì)數(shù)的底數(shù)),若關(guān)于x的方程恰有5個(gè)相異的實(shí)根,則實(shí)數(shù)a的取值范圍為________.14.若滿足約束條件,則的最小值是_________,最大值是_________.15.滿足線性的約束條件的目標(biāo)函數(shù)的最大值為________16.變量滿足約束條件,則目標(biāo)函數(shù)的最大值是____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(12分)“綠水青山就是金山銀山”,為推廣生態(tài)環(huán)境保護(hù)意識(shí),高二一班組織了環(huán)境保護(hù)興趣小組,分為兩組,討論學(xué)習(xí).甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現(xiàn)要從這人的兩個(gè)興趣小組中抽出人參加學(xué)校的環(huán)保知識(shí)競(jìng)賽.(1)設(shè)事件為“選出的這個(gè)人中要求兩個(gè)男生兩個(gè)女生,而且這兩個(gè)男生必須來(lái)自不同的組”,求事件發(fā)生的概率;(2)用表示抽取的人中乙組女生的人數(shù),求隨機(jī)變量的分布列和期望18.(12分)已知函數(shù),,且.(1)當(dāng)時(shí),求函數(shù)的減區(qū)間;(2)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;(3)若方程的兩個(gè)實(shí)數(shù)根是,試比較,與的大小,并說(shuō)明理由.19.(12分)已知圓的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù)),若直線與圓相切,求實(shí)數(shù)的值.20.(12分)已知橢圓:()的左、右焦點(diǎn)分別為和,右頂點(diǎn)為,且,短軸長(zhǎng)為.(1)求橢圓的方程;(2)若過點(diǎn)作垂直軸的直線,點(diǎn)為直線上縱坐標(biāo)不為零的任意一點(diǎn),過作的垂線交橢圓于點(diǎn)和,當(dāng)時(shí),求此時(shí)四邊形的面積.21.(12分)如圖,在中,,的角平分線與交于點(diǎn),.(Ⅰ)求;(Ⅱ)求的面積.22.(10分)設(shè),函數(shù),其中為自然對(duì)數(shù)的底數(shù).(1)設(shè)函數(shù).①若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點(diǎn);②求證:對(duì)任意的,直線都不是的切線;(2)設(shè)函數(shù),試判斷函數(shù)是否存在極小值,若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
先求出,得到,再結(jié)合集合交集的運(yùn)算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.本題主要考查了集合的混合運(yùn)算,其中解答中熟記集合的交集、補(bǔ)集的定義及運(yùn)算是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.2.A【解析】
由得,然后分子分母同時(shí)乘以分母的共軛復(fù)數(shù)可得復(fù)數(shù),從而可得的虛部.【詳解】因?yàn)?所以,所以復(fù)數(shù)的虛部為.故選A.本題考查了復(fù)數(shù)的除法運(yùn)算和復(fù)數(shù)的概念,屬于基礎(chǔ)題.復(fù)數(shù)除法運(yùn)算的方法是分子分母同時(shí)乘以分母的共軛復(fù)數(shù),轉(zhuǎn)化為乘法運(yùn)算.3.C【解析】試題分析:通過對(duì)以下四個(gè)四棱錐的三視圖對(duì)照可知,只有選項(xiàng)C是符合要求的.考點(diǎn):三視圖4.D【解析】
先求出集合N的補(bǔ)集,再求出集合M與的交集,即為所求陰影部分表示的集合.【詳解】由,,可得或,又所以.故選:D.本題考查了韋恩圖表示集合,集合的交集和補(bǔ)集的運(yùn)算,屬于基礎(chǔ)題.5.D【解析】
根據(jù)雷達(dá)圖對(duì)選項(xiàng)逐一分析,由此確定敘述正確的選項(xiàng).【詳解】對(duì)于A選項(xiàng),甲的數(shù)據(jù)分析分,乙的數(shù)據(jù)分析分,甲低于乙,故A選項(xiàng)錯(cuò)誤.對(duì)于B選項(xiàng),甲的建模素養(yǎng)分,乙的建模素養(yǎng)分,甲低于乙,故B選項(xiàng)錯(cuò)誤.對(duì)于C選項(xiàng),乙的六大素養(yǎng)中,邏輯推理分,不是最差,故C選項(xiàng)錯(cuò)誤.對(duì)于D選項(xiàng),甲的總得分分,乙的總得分分,所以乙的六大素養(yǎng)整體平均水平優(yōu)于甲,故D選項(xiàng)正確.故選:D本小題主要考查圖表分析和數(shù)據(jù)處理,屬于基礎(chǔ)題.6.D【解析】
集合.為自然數(shù)集,由此能求出結(jié)果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯(cuò)誤.故選:D.本題考查命題真假的判斷、元素與集合的關(guān)系、集合與集合的關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.7.A【解析】
依題意問題是,然后按直到型驗(yàn)證即可.【詳解】根據(jù)題意為了計(jì)算7個(gè)數(shù)的方差,即輸出的,觀察程序框圖可知,應(yīng)填入,,故選:A.本題考查算法與程序框圖,考查推理論證能力以及轉(zhuǎn)化與化歸思想,屬于基礎(chǔ)題.8.D【解析】
由拋物線方程可得焦點(diǎn)坐標(biāo)及準(zhǔn)線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點(diǎn)的橫坐標(biāo),即為中點(diǎn)到軸的距離.【詳解】解:由拋物線方程可知,,即,.設(shè)則,即,所以.所以線段的中點(diǎn)到軸的距離為.故選:D.本題考查了拋物線的定義,考查了拋物線的方程.本題的關(guān)鍵是由拋物線的定義求得兩點(diǎn)橫坐標(biāo)的和.9.C【解析】因?yàn)閒x=lnx2-4x+4x-23=10.B【解析】
求出,把坐標(biāo)代入方程可求得.【詳解】據(jù)題意,得,所以,所以.故選:B.本題考查線性回歸直線方程,由性質(zhì)線性回歸直線一定過中心點(diǎn)可計(jì)算參數(shù)值.11.C【解析】
解:因?yàn)镻={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C12.A【解析】
可采用假設(shè)法進(jìn)行討論推理,即可得到結(jié)論.【詳解】由題意,假設(shè)甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,?。何覜]有抓到就是真的,與他們四人中只有一個(gè)人抓到是矛盾的;假設(shè)甲:我沒有抓到是假的,那么?。何覜]有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.本題主要考查了合情推理及其應(yīng)用,其中解答中合理采用假設(shè)法進(jìn)行討論推理是解答的關(guān)鍵,著重考查了推理與分析判斷能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
作出圖象,求出方程的根,分類討論的正負(fù),數(shù)形結(jié)合即可.【詳解】當(dāng)時(shí),令,解得,所以當(dāng)時(shí),,則單調(diào)遞增,當(dāng)時(shí),,則單調(diào)遞減,當(dāng)時(shí),單調(diào)遞減,且,作出函數(shù)的圖象如圖:(1)當(dāng)時(shí),方程整理得,只有2個(gè)根,不滿足條件;(2)若,則當(dāng)時(shí),方程整理得,則,,此時(shí)各有1解,故當(dāng)時(shí),方程整理得,有1解同時(shí)有2解,即需,,因?yàn)椋?),故此時(shí)滿足題意;或有2解同時(shí)有1解,則需,由(1)可知不成立;或有3解同時(shí)有0解,根據(jù)圖象不存在此種情況,或有0解同時(shí)有3解,則,解得,故,(3)若,顯然當(dāng)時(shí),和均無(wú)解,當(dāng)時(shí),和無(wú)解,不符合題意.綜上:的范圍是,故答案為:,本題主要考查了函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力,屬于中檔題.14.06【解析】
作不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可求出結(jié)果.【詳解】作出可行域,如圖中的陰影部分:求的最值,即求直線在軸上的截距最小和最大時(shí),當(dāng)直線過點(diǎn)時(shí),軸上截距最大,即z取最小值,.當(dāng)直線過點(diǎn)時(shí),軸上截距最小,即z取最大值,.故答案為:0;6.本題主要考查了線性規(guī)劃中的最值問題,利用數(shù)形結(jié)合是解決問題的基本方法,屬于中檔題.15.1【解析】
作出不等式組表示的平面區(qū)域,將直線進(jìn)行平移,利用的幾何意義,可求出目標(biāo)函數(shù)的最大值?!驹斀狻坑?,得,作出可行域,如圖所示:平移直線,由圖像知,當(dāng)直線經(jīng)過點(diǎn)時(shí),截距最小,此時(shí)取得最大值。由,解得,代入直線,得。本題主要考查簡(jiǎn)單的線性規(guī)劃問題的解法——平移法。16.5【解析】
分析:畫出可行域,平移直線,當(dāng)直線經(jīng)過時(shí),可得有最大值.詳解:畫出束條件表示的可行性,如圖,由可得,可得,目標(biāo)函數(shù)變形為,平移直線,當(dāng)直線經(jīng)過時(shí),可得有最大值,故答案為.點(diǎn)睛:本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的定點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ)分布列見解析,.【解析】
(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由題得可能取值為,再求x的分布列和期望.【詳解】(Ⅰ)(Ⅱ)可能取值為,,,,,的分布列為0123.本題主要考查古典概型的計(jì)算,考查隨機(jī)變量的分布列和期望的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.18.(1)(2)詳見解析(3)【解析】
試題分析:(1)當(dāng)時(shí),,由得減區(qū)間;(2)因?yàn)?,所以,因?yàn)樗?,方程有兩個(gè)不相等的實(shí)數(shù)根;(3)因?yàn)?,,所以試題解析:(1)當(dāng)時(shí),,由得減區(qū)間;(2)法1:,,,所以,方程有兩個(gè)不相等的實(shí)數(shù)根;法2:,,是開口向上的二次函數(shù),所以,方程有兩個(gè)不相等的實(shí)數(shù)根;(3)因?yàn)椋?,又在和增,在減,所以.考點(diǎn):利用導(dǎo)數(shù)求函數(shù)減區(qū)間,二次函數(shù)與二次方程關(guān)系19.【解析】
將圓的極坐標(biāo)方程化為直角坐標(biāo)方程,直線的參數(shù)方程化為普通方程,再根據(jù)直線與圓相切,利用圓心到直線的距離等于半徑,即可求實(shí)數(shù)的值.【詳解】由,得,,即圓的方程為,又由消,得,直線與圓相切,,.本題重點(diǎn)考查方程的互化,考查直線與圓的位置關(guān)系,解題的關(guān)鍵是利用圓心到直線的距離等于半徑,研究直線與圓相切.20.(1)(2)【解析】
(1)依題意可得,解方程組即可求出橢圓的方程;(2)設(shè),則,設(shè)直線的方程為,聯(lián)立直線與橢圓方程,消去,設(shè),,列出韋達(dá)定理,即可表示,再根據(jù)求出參數(shù),從而得出,最后由點(diǎn)到直線的距離得到,由即可得解;【詳解】解:(1)∵,∴解得,∴橢圓的方程為.(2)∵,∴可設(shè),∴.∵,∴,∴設(shè)直線的方程為,∴,∴,顯然恒成立.設(shè),,則,,∴.∴,∴,∴解得,解得,∴,,∴.∵此時(shí)直線的方程為,,∴點(diǎn)到直線的距離為,∴,即此時(shí)四邊形的面積為.本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),直線與橢圓的綜合應(yīng)用,考查計(jì)算能力,屬于中檔題.21.(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,進(jìn)而得,在中,由正弦定理得,所以的面積即可得解.試題解析:(Ⅰ)在中,由余弦定理得,所以,由正弦定理得,所以.(Ⅱ)由(Ⅰ)可知.在中,.在中,由正弦定理得,所以.所以的面積.22.(1)①函數(shù)與的圖象在區(qū)間上有交點(diǎn);②證明見解析;(2)且;【解析】
(1)①令,結(jié)合函數(shù)零點(diǎn)的判定定理判斷即可;②設(shè)切點(diǎn)橫坐標(biāo)為,求出切線方程,得到,根據(jù)函數(shù)的單調(diào)性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,確定的范圍即可.【詳解】解:(1)①當(dāng)時(shí),函數(shù),令,,則,,故,又函數(shù)在區(qū)間上的圖象是不間斷曲線,故函數(shù)在區(qū)間上有零點(diǎn),故函數(shù)與的圖象在區(qū)間上有交點(diǎn);②證明:假設(shè)存在,使得直線是曲線的切線,切點(diǎn)橫坐標(biāo)為,且,則切線在點(diǎn)切線方程為,即,從而,且,消去,得,故滿足等
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024電力行業(yè)考試備戰(zhàn)話題及試題及答案
- 2024年珠寶鑒定分析技術(shù)試題及答案
- 防涉黃課件教學(xué)課件
- 2025規(guī)范便捷商業(yè)店鋪?zhàn)赓U合同
- 2025健身房項(xiàng)目合作合同范本(標(biāo)準(zhǔn)版)
- 甘肅機(jī)電職業(yè)技術(shù)學(xué)院《藥理學(xué)及毒理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 六安職業(yè)技術(shù)學(xué)院《資源與環(huán)境》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025伙伴廣告合同
- 可克達(dá)拉職業(yè)技術(shù)學(xué)院《幼兒教師職業(yè)道德與禮儀》2023-2024學(xué)年第二學(xué)期期末試卷
- 防拐防騙課件公安機(jī)關(guān)
- DL∕ T 949-2005 水工建筑物塑性嵌縫密封材料技術(shù)標(biāo)準(zhǔn)
- 河南科學(xué)技術(shù)出版社小學(xué)信息技術(shù)六年級(jí)上冊(cè)教案
- 2024年紅十字應(yīng)急救護(hù)知識(shí)競(jìng)賽考試題庫(kù)500題(含答案)
- TD/T 1061-2021 自然資源價(jià)格評(píng)估通則(正式版)
- 2024年四川省成都市高新區(qū)中考數(shù)學(xué)二診試卷
- 2024年社區(qū)工作者考試必考1000題附完整答案【典優(yōu)】
- WMT8-2022二手乘用車出口質(zhì)量要求
- 30題質(zhì)量檢驗(yàn)員崗位常見面試問題含HR問題考察點(diǎn)及參考回答
- 智能燈具故障排除方案
- 汽車租賃服務(wù)投標(biāo)方案
- 20道瑞幸咖啡營(yíng)運(yùn)經(jīng)理崗位常見面試問題含HR常問問題考察點(diǎn)及參考回答
評(píng)論
0/150
提交評(píng)論