版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年涼山市重點中學中考適應性考試數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在△ABC中,AB=AC,∠A=30°,AB的垂直平分線l交AC于點D,則∠CBD的度數(shù)為()A.30° B.45° C.50° D.75°2.關于x的一元二次方程x2-2x-(m-1)=0有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍是()A.且 B. C.且 D.3.如圖,PA,PB分別與⊙O相切于A,B兩點,若∠C=65°,則∠P的度數(shù)為()A.65° B.130° C.50° D.100°4.下列計算,正確的是()A. B.C.3 D.5.如圖,已知,為反比例函數(shù)圖象上的兩點,動點在軸正半軸上運動,當線段與線段之差達到最大時,點的坐標是()A. B. C. D.6.若x,y的值均擴大為原來的3倍,則下列分式的值保持不變的是()A. B. C. D.7.如圖,在平面直角坐標系xOy中,等腰梯形ABCD的頂點坐標分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對稱中心作點P(0,2)的對稱點P1,以B為對稱中心作點P1的對稱點P2,以C為對稱中心作點P2的對稱點P3,以D為對稱中心作點P3的對稱點P4,…,重復操作依次得到點P1,P2,…,則點P2010的坐標是()A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)8.若一組數(shù)據(jù)1、、2、3、4的平均數(shù)與中位數(shù)相同,則不可能是下列選項中的()A.0 B.2.5 C.3 D.59.下列各曲線中表示y是x的函數(shù)的是()A. B. C. D.10.如圖,數(shù)軸上的A、B、C、D四點中,與數(shù)﹣表示的點最接近的是()A.點A B.點B C.點C D.點D二、填空題(共7小題,每小題3分,滿分21分)11.如圖,PA,PB是⊙O是切線,A,B為切點,AC是⊙O的直徑,若∠P=46°,則∠BAC=▲度.12.若一個扇形的圓心角為60°,面積為6π,則這個扇形的半徑為__________.13.化簡:=_____.14.若a,b互為相反數(shù),則a2﹣b2=_____.15.分解因式:a3-12a2+36a=______.16.袋中裝有紅、綠各一個小球,隨機摸出1個小球后放回,再隨機摸出一個,則第一次摸到紅球,第二次摸到綠球的概率是_____.17.如圖,AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于點C,若OC=6,則AB的長等于__.三、解答題(共7小題,滿分69分)18.(10分)為了解中學生“平均每天體育鍛煉時間”的情況,某地區(qū)教育部門隨機調查了若干名中學生,根據(jù)調查結果制作統(tǒng)計圖①和圖②,請根據(jù)相關信息,解答下列問題:本次接受隨機抽樣調查的中學生人數(shù)為_______,圖①中m的值是_____;求本次調查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);根據(jù)統(tǒng)計數(shù)據(jù),估計該地區(qū)250000名中學生中,每天在校體育鍛煉時間大于等于1.5h的人數(shù).19.(5分)如圖,在△ABC中,∠C=90°.作∠BAC的平分線AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面積.20.(8分)光華農機租賃公司共有50臺聯(lián)合收割機,其中甲型20臺,乙型30臺,先將這50臺聯(lián)合收割機派往A、B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū).兩地區(qū)與該農機租賃公司商定的每天的租賃價格見表:每臺甲型收割機的租金每臺乙型收割機的租金A地區(qū)18001600B地區(qū)16001200(1)設派往A地區(qū)x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),求y與x間的函數(shù)關系式,并寫出x的取值范圍;(2)若使農機租賃公司這50臺聯(lián)合收割機一天獲得的租金總額不低于79600元,說明有多少種分配方案,并將各種方案設計出來;(3)如果要使這50臺聯(lián)合收割機每天獲得的租金最高,請你為光華農機租賃公司提一條合理化建議.21.(10分)“C919”大型客機首飛成功,激發(fā)了同學們對航空科技的興趣,如圖是某校航模興趣小組獲得的一張數(shù)據(jù)不完整的航模飛機機翼圖紙,圖中AB∥CD,AM∥BN∥ED,AE⊥DE,請根據(jù)圖中數(shù)據(jù),求出線段BE和CD的長.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結果保留小數(shù)點后一位)22.(10分)如圖,一農戶要建一個矩形豬舍,豬舍的一邊利用長為12m的住房墻,另外三邊用25m長的建筑材料圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,所圍矩形豬舍的長、寬分別為多少時,豬舍面積為80m2?23.(12分)如圖1,在平面直角坐標系中,O是坐標原點,長方形OACB的頂點A、B分別在x軸與y軸上,已知OA=6,OB=1.點D為y軸上一點,其坐標為(0,2),點P從點A出發(fā)以每秒2個單位的速度沿線段AC﹣CB的方向運動,當點P與點B重合時停止運動,運動時間為t秒.(1)當點P經過點C時,求直線DP的函數(shù)解析式;(2)如圖②,把長方形沿著OP折疊,點B的對應點B′恰好落在AC邊上,求點P的坐標.(3)點P在運動過程中是否存在使△BDP為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.24.(14分)當=,b=2時,求代數(shù)式的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分線交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故選B.2、A【解析】
根據(jù)一元二次方程的系數(shù)結合根的判別式△>1,即可得出關于m的一元一次不等式,解之即可得出實數(shù)m的取值范圍.【詳解】∵關于x的一元二次方程x2﹣2x﹣(m﹣1)=1有兩個不相等的實數(shù)根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.故選B.【點睛】本題考查了根的判別式,牢記“當△>1時,方程有兩個不相等的實數(shù)根”是解題的關鍵.3、C【解析】試題分析:∵PA、PB是⊙O的切線,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,則∠P=360°﹣(90°+90°+130°)=50°.故選C.考點:切線的性質.4、B【解析】
根據(jù)二次根式的加減法則,以及二次根式的性質逐項判斷即可.【詳解】解:∵=2,∴選項A不正確;∵=2,∴選項B正確;∵3﹣=2,∴選項C不正確;∵+=3≠,∴選項D不正確.故選B.【點睛】本題主要考查了二次根式的加減法,以及二次根式的性質和化簡,要熟練掌握,解答此題的關鍵是要明確:二次根式相加減,先把各個二次根式化成最簡二次根式,再把被開方數(shù)相同的二次根式進行合并,合并方法為系數(shù)相加減,根式不變.5、D【解析】
求出AB的坐標,設直線AB的解析式是y=kx+b,把A、B的坐標代入求出直線AB的解析式,根據(jù)三角形的三邊關系定理得出在△ABP中,|AP-BP|<AB,延長AB交x軸于P′,當P在P′點時,PA-PB=AB,此時線段AP與線段BP之差達到最大,求出直線AB于x軸的交點坐標即可.【詳解】把,代入反比例函數(shù),得:,,,在中,由三角形的三邊關系定理得:,延長交軸于,當在點時,,即此時線段與線段之差達到最大,設直線的解析式是,把,的坐標代入得:,解得:,直線的解析式是,當時,,即,故選D.【點睛】本題考查了三角形的三邊關系定理和用待定系數(shù)法求一次函數(shù)的解析式的應用,解此題的關鍵是確定P點的位置,題目比較好,但有一定的難度.6、D【解析】
根據(jù)分式的基本性質,x,y的值均擴大為原來的3倍,求出每個式子的結果,看結果等于原式的即是答案.【詳解】根據(jù)分式的基本性質,可知若x,y的值均擴大為原來的3倍,A、,錯誤;B、,錯誤;C、,錯誤;D、,正確;故選D.【點睛】本題考查的是分式的基本性質,即分子分母同乘以一個不為0的數(shù),分式的值不變.此題比較簡單,但計算時一定要細心.7、B【解析】分析:根據(jù)題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,結合中點坐標公式即可求得點P1的坐標;同理可求得其它各點的坐標,分析可得規(guī)律,進而可得答案.詳解:根據(jù)題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,又∵A的坐標是(1,1),結合中點坐標公式可得P1的坐標是(1,0);同理P1的坐標是(1,﹣1),記P1(a1,b1),其中a1=1,b1=﹣1.根據(jù)對稱關系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同樣可以求得,點P10的坐標為(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴點P1010的坐標是(1010,﹣1),故選:B.點睛:本題考查了對稱的性質,坐標與圖形的變化---旋轉,根據(jù)條件求出前邊幾個點的坐標,得到規(guī)律是解題關鍵.8、C【解析】
解:這組數(shù)據(jù)1、a、2、1、4的平均數(shù)為:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)將這組數(shù)據(jù)從小到大的順序排列后為a,1,2,1,4,中位數(shù)是2,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=2,解得a=0,符合排列順序.(2)將這組數(shù)據(jù)從小到大的順序排列后為1,a,2,1,4,中位數(shù)是2,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=2,解得a=0,不符合排列順序.(1)將這組數(shù)據(jù)從小到大的順序排列后1,2,a,1,4,中位數(shù)是a,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=a,解得a=2.5,符合排列順序.(4)將這組數(shù)據(jù)從小到大的順序排列后為1,2,1,a,4,中位數(shù)是1,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=1,解得a=5,不符合排列順序.(5)將這組數(shù)據(jù)從小到大的順序排列為1,2,1,4,a,中位數(shù)是1,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=1,解得a=5;符合排列順序;綜上,可得:a=0、2.5或5,∴a不可能是1.故選C.【點睛】本題考查中位數(shù);算術平均數(shù).9、D【解析】根據(jù)函數(shù)的意義可知:對于自變量x的任何值,y都有唯一的值與之相對應,故D正確.故選D.10、B【解析】
,計算-1.732與-3,-2,-1的差的絕對值,確定絕對值最小即可.【詳解】,,,,因為0.268<0.732<1.268,所以表示的點與點B最接近,故選B.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】
由PA、PB是圓O的切線,根據(jù)切線長定理得到PA=PB,即三角形APB為等腰三角形,由頂角的度數(shù),利用三角形的內角和定理求出底角的度數(shù),再由AP為圓O的切線,得到OA與AP垂直,根據(jù)垂直的定義得到∠OAP為直角,再由∠OAP-∠PAB即可求出∠BAC的度數(shù)【詳解】∵PA,PB是⊙O是切線,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=.又∵PA是⊙O是切線,AO為半徑,∴OA⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.故答案為:1【點睛】此題考查了切線的性質,切線長定理,等腰三角形的性質,以及三角形的內角和定理,熟練掌握定理及性質是解本題的關鍵.12、6【解析】設這個扇形的半徑為,根據(jù)題意可得:,解得:.故答案為.13、【解析】
直接利用二次根式的性質化簡求出答案.【詳解】,故答案為.【點睛】本題考查了二次根式的性質與化簡,正確掌握二次根式的性質是解題的關鍵.14、1【解析】【分析】直接利用平方差公式分解因式進而結合相反數(shù)的定義分析得出答案.【詳解】∵a,b互為相反數(shù),∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案為1.【點睛】本題考查了公式法分解因式以及相反數(shù)的定義,正確分解因式是解題關鍵.15、a(a-6)2【解析】
原式提取a,再利用完全平方公式分解即可.【詳解】原式=a(a2-12a+36)=a(a-6)2,故答案為a(a-6)2【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解題的關鍵.16、【解析】解:列表如下:所有等可能的情況有4種,所以第一次摸到紅球,第二次摸到綠球的概率=.故答案為.17、18【解析】連接OB,∵OA=OB,∴∠B=∠A=30°,∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,∴∠BOC=∠B,∴CB=OC=6,∴AB=AC+BC=18,故答案為18.三、解答題(共7小題,滿分69分)18、(1)250、12;(2)平均數(shù):1.38h;眾數(shù):1.5h;中位數(shù):1.5h;(3)160000人;【解析】
(1)根據(jù)題意,本次接受調查的學生總人數(shù)為各個金額人數(shù)之和,用總概率減去其他金額的概率即可求得m值.(2)平均數(shù)為一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以這組數(shù)據(jù)的個數(shù);眾數(shù)是在一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);中位數(shù)是將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù),或是最中間兩個數(shù)據(jù)的平均數(shù),據(jù)此求解即可.(3)根據(jù)樣本估計總體,用“每天在校體育鍛煉時間大于等于1.5h的人數(shù)”的概率乘以全??側藬?shù)求解即可.【詳解】(1)本次接受隨機抽樣調查的中學生人數(shù)為60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案為250、12;(2)平均數(shù)為=1.38(h),眾數(shù)為1.5h,中位數(shù)為=1.5h;(3)估計每天在校體育鍛煉時間大于等于1.5h的人數(shù)約為250000×=160000人.【點睛】本題主要考查數(shù)據(jù)的收集、處理以及統(tǒng)計圖表.19、(1)答案見解析;(2)【解析】
(1)根據(jù)三角形角平分線的定義,即可得到AD;
(2)過D作于DE⊥ABE,根據(jù)角平分線的性質得到DE=CD=4,由三角形的面積公式即可得到結論.【詳解】解:(1)如圖所示,AD即為所求;
(2)如圖,過D作DE⊥AB于E,
∵AD平分∠BAC,
∴DE=CD=4,
∴S△ABD=AB·DE=20cm2.【點睛】掌握畫角平分線的方法和角平分線的相關定義知識是解答本題的關鍵.20、(1)y=200x+74000(10≤x≤30)(2)有三種分配方案,方案一:派往A地區(qū)的甲型聯(lián)合收割機2臺,乙型聯(lián)合收割機28臺,其余的全派往B地區(qū);方案二:派往A地區(qū)的甲型聯(lián)合收割機1臺,乙型聯(lián)合收割機29臺,其余的全派往B地區(qū);方案三:派往A地區(qū)的甲型聯(lián)合收割機0臺,乙型聯(lián)合收割機30臺,其余的全派往B地區(qū);(3)派往A地區(qū)30臺乙型聯(lián)合收割機,20臺甲型聯(lián)合收割機全部派往B地區(qū),使該公司50臺收割機每天獲得租金最高.【解析】
(1)根據(jù)題意和表格中的數(shù)據(jù)可以得到y(tǒng)關于x的函數(shù)關系式;
(2)根據(jù)題意可以得到相應的不等式,從而可以解答本題;
(3)根據(jù)(1)中的函數(shù)解析式和一次函數(shù)的性質可以解答本題.【詳解】解:(1)設派往A地區(qū)x臺乙型聯(lián)合收割機,則派往B地區(qū)x臺乙型聯(lián)合收割機為(30﹣x)臺,派往A、B地區(qū)的甲型聯(lián)合收割機分別為(30﹣x)臺和(x﹣10)臺,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);(2)由題意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x為整數(shù),∴x=28、29、30,∴有三種分配方案,方案一:派往A地區(qū)的甲型聯(lián)合收割機2臺,乙型聯(lián)合收割機28臺,其余的全派往B地區(qū);方案二:派往A地區(qū)的甲型聯(lián)合收割機1臺,乙型聯(lián)合收割機29臺,其余的全派往B地區(qū);方案三:派往A地區(qū)的甲型聯(lián)合收割機0臺,乙型聯(lián)合收割機30臺,其余的全派往B地區(qū);(3)派往A地區(qū)30臺乙型聯(lián)合收割機,20臺甲型聯(lián)合收割機全部派往B地區(qū),使該公司50臺收割機每天獲得租金最高,理由:∵y=200x+74000中y隨x的增大而增大,∴當x=30時,y取得最大值,此時y=80000,∴派往A地區(qū)30臺乙型聯(lián)合收割機,20臺甲型聯(lián)合收割機全部派往B地區(qū),使該公司50臺收割機每天獲得租金最高.【點睛】本題考查一次函數(shù)的性質,解題關鍵是明確題意,找出所求問題需要的條件,利用一次函數(shù)和不等式的性質解答.21、線段BE的長約等于18.8cm,線段CD的長約等于10.8cm.【解析】試題分析:在Rt△BED中可先求得BE的長,過C作CF⊥AE于點F,則可求得AF的長,從而可求得EF的長,即可求得CD的長.試題解析:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE?tan∠BDE≈18.75(cm),如圖,過C作AE的垂線,垂足為F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四邊形CDEF為矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE-AF≈10.8(cm),答:線段BE的長約等于18.8cm,線段CD的長約等于10.8cm.【點睛】本題考查了解直角三角形的應用,正確地添加輔助線構造直角三角形是解題的關鍵.22、10,1.【解析】試題分析:可以設矩形豬舍垂直于住房墻一邊長為m,可以得出平行于墻的一邊的長為m,由題意得出方程求出邊長的值.試題解析:設矩形豬舍垂直于住房墻一邊長為m,可以得出平行于墻的一邊的長為m,由題意得化簡,得,解得:當時,(舍去),當時,,答:所圍矩形豬舍的長為10m、寬為1m.考點:一元二次方程的應用題.23、(1)y=x+2;(2)y=x+2;(2)①S=﹣2t+16,②點P的坐標是(,1);(3)存在,滿足題意的P坐標為(6,6)或(6
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度高端住宅小區(qū)物業(yè)保安勞務服務合同范本
- 2025年度購房貸款個人信息保護合同
- 2025年度游樂園項目場地使用權及設施維護合作協(xié)議
- 2025年度水田承包與農業(yè)品牌建設合作協(xié)議
- 二零二五年度白蟻防治服務合同-城市綠化帶白蟻防治
- 二零二五年度游艇俱樂部船舶租賃代理合同
- 二零二五年度餐飲企業(yè)員工勞動合同法律服務與保障
- 2025年度互聯(lián)網簽訂方協(xié)議詳細流程與網絡安全責任追究協(xié)議
- 二零二五年度二手電腦及配件交易合同
- 二零二五年度綠色能源股份轉讓合同
- 2024年人教版小學三年級信息技術(下冊)期末試卷附答案
- TB 10012-2019 鐵路工程地質勘察規(guī)范
- 新蘇教版三年級下冊科學全冊知識點(背誦用)
- 鄉(xiāng)鎮(zhèn)風控維穩(wěn)應急預案演練
- 腦梗死合并癲癇病人的護理查房
- 蘇教版四年級上冊脫式計算300題及答案
- 犯罪現(xiàn)場保護培訓課件
- 扣款通知單 采購部
- 電除顫操作流程圖
- 湖北教育出版社三年級下冊信息技術教案
- 設計基礎全套教學課件
評論
0/150
提交評論