版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年安徽省長豐縣二中高三階段性檢測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.復(fù)數(shù)的實(shí)部與虛部相等,其中為虛部單位,則實(shí)數(shù)()A.3 B. C. D.2.已知橢圓的右焦點(diǎn)為F,左頂點(diǎn)為A,點(diǎn)P橢圓上,且,若,則橢圓的離心率為()A. B. C. D.3.復(fù)數(shù)滿足為虛數(shù)單位),則的虛部為()A. B. C. D.4.已知函數(shù)是奇函數(shù),且,若對,恒成立,則的取值范圍是()A. B. C. D.5.過拋物線的焦點(diǎn)的直線交該拋物線于,兩點(diǎn),為坐標(biāo)原點(diǎn).若,則直線的斜率為()A. B. C. D.6.已知向量與的夾角為,,,則()A. B.0 C.0或 D.7.設(shè),則A. B. C. D.8.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.39.過拋物線C:y2=4x的焦點(diǎn)F,且斜率為的直線交C于點(diǎn)M(M在x軸的上方),l為C的準(zhǔn)線,點(diǎn)N在l上且MN⊥l,則M到直線NF的距離為()A. B. C. D.10.在邊長為1的等邊三角形中,點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),則()A. B. C. D.11.函數(shù)的圖象大致是()A. B.C. D.12.根據(jù)如圖所示的程序框圖,當(dāng)輸入的值為3時(shí),輸出的值等于()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若橢圓:的一個(gè)焦點(diǎn)坐標(biāo)為,則的長軸長為_______.14.連續(xù)擲兩次骰子,分別得到的點(diǎn)數(shù)作為點(diǎn)的坐標(biāo),則點(diǎn)落在圓內(nèi)的概率為______________.15.在中,角、、所對的邊分別為、、,若,,則的取值范圍是_____.16.已知直角坐標(biāo)系中起點(diǎn)為坐標(biāo)原點(diǎn)的向量滿足,且,,,存在,對于任意的實(shí)數(shù),不等式,則實(shí)數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若曲線的切線方程為,求實(shí)數(shù)的值;(2)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.18.(12分)已知橢圓,點(diǎn),點(diǎn)滿足(其中為坐標(biāo)原點(diǎn)),點(diǎn)在橢圓上.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的右焦點(diǎn)為,若不經(jīng)過點(diǎn)的直線與橢圓交于兩點(diǎn).且與圓相切.的周長是否為定值?若是,求出定值;若不是,請說明理由.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,設(shè),證明:,,使.20.(12分)已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線的距離為.(1)求橢圓的方程;(2)已知定點(diǎn),是否存在過的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請說明理由.21.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.22.(10分)如圖,四邊形是邊長為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
利用乘法運(yùn)算化簡復(fù)數(shù)即可得到答案.【詳解】由已知,,所以,解得.故選:B本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.2.C【解析】
不妨設(shè)在第一象限,故,根據(jù)得到,解得答案.【詳解】不妨設(shè)在第一象限,故,,即,即,解得,(舍去).故選:.本題考查了橢圓的離心率,意在考查學(xué)生的計(jì)算能力.3.C【解析】
,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,故的虛部為.故選:C.本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.4.A【解析】
先根據(jù)函數(shù)奇偶性求得,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,利用函數(shù)單調(diào)性求解不等式即可.【詳解】因?yàn)楹瘮?shù)是奇函數(shù),所以函數(shù)是偶函數(shù).,即,又,所以,.函數(shù)的定義域?yàn)椋?,則函數(shù)在上為單調(diào)遞增函數(shù).又在上,,所以為偶函數(shù),且在上單調(diào)遞增.由,可得,對恒成立,則,對恒成立,,得,所以的取值范圍是.故選:A.本題考查利用函數(shù)單調(diào)性求解不等式,根據(jù)方程組法求函數(shù)解析式,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,屬壓軸題.5.D【解析】
根據(jù)拋物線的定義,結(jié)合,求出的坐標(biāo),然后求出的斜率即可.【詳解】解:拋物線的焦點(diǎn),準(zhǔn)線方程為,設(shè),則,故,此時(shí),即.則直線的斜率.故選:D.本題考查了拋物線的定義,直線斜率公式,屬于中檔題.6.B【解析】
由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達(dá)式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B本題主要考查向量數(shù)量積的運(yùn)算和向量的模長平方等于向量的平方,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.7.C【解析】分析:利用復(fù)數(shù)的除法運(yùn)算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡復(fù)數(shù),然后求解復(fù)數(shù)的模.詳解:,則,故選c.點(diǎn)睛:復(fù)數(shù)是高考中的必考知識,主要考查復(fù)數(shù)的概念及復(fù)數(shù)的運(yùn)算.要注意對實(shí)部、虛部的理解,掌握純虛數(shù)、共軛復(fù)數(shù)這些重要概念,復(fù)數(shù)的運(yùn)算主要考查除法運(yùn)算,通過分母實(shí)數(shù)化轉(zhuǎn)化為復(fù)數(shù)的乘法,運(yùn)算時(shí)特別要注意多項(xiàng)式相乘后的化簡,防止簡單問題出錯(cuò),造成不必要的失分.8.B【解析】
由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.本題考查奇偶性在抽象函數(shù)中的應(yīng)用,考查學(xué)生分析問題的能力,難度較易.9.C【解析】
聯(lián)立方程解得M(3,),根據(jù)MN⊥l得|MN|=|MF|=4,得到△MNF是邊長為4的等邊三角形,計(jì)算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y=(x-1).由得x=或x=3.由M在x軸的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直線FM的傾斜角,即∠NMF=60°,因此△MNF是邊長為4的等邊三角形點(diǎn)M到直線NF的距離為故選:C.本題考查了直線和拋物線的位置關(guān)系,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.10.C【解析】
根據(jù)平面向量基本定理,用來表示,然后利用數(shù)量積公式,簡單計(jì)算,可得結(jié)果.【詳解】由題可知:點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),所以又所以則故選:C本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細(xì)心觀察,屬基礎(chǔ)題.11.B【解析】
根據(jù)函數(shù)表達(dá)式,把分母設(shè)為新函數(shù),首先計(jì)算函數(shù)定義域,然后求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負(fù)判斷函數(shù)單調(diào)性,對應(yīng)函數(shù)圖像得到答案.【詳解】設(shè),,則的定義域?yàn)?,當(dāng),,單增,當(dāng),,單減,則.則在上單增,上單減,.選B.本題考查了函數(shù)圖像的判斷,用到了換元的思想,簡化了運(yùn)算,同學(xué)們還可以用特殊值法等方法進(jìn)行判斷.12.C【解析】
根據(jù)程序圖,當(dāng)x<0時(shí)結(jié)束對x的計(jì)算,可得y值.【詳解】由題x=3,x=x-2=3-1,此時(shí)x>0繼續(xù)運(yùn)行,x=1-2=-1<0,程序運(yùn)行結(jié)束,得,故選C.本題考查程序框圖,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由焦點(diǎn)坐標(biāo)得從而可求出,繼而得到橢圓的方程,即可求出長軸長.【詳解】解:因?yàn)橐粋€(gè)焦點(diǎn)坐標(biāo)為,則,即,解得或由表示的是橢圓,則,所以,則橢圓方程為所以.故答案為:.本題考查了橢圓的標(biāo)準(zhǔn)方程,考查了橢圓的幾何意義.本題的易錯(cuò)點(diǎn)是忽略,從而未對的兩個(gè)值進(jìn)行取舍.14.【解析】
連續(xù)擲兩次骰子共有種結(jié)果,列出滿足條件的結(jié)果有11種,利用古典概型即得解【詳解】由題意知,連續(xù)擲兩次骰子共有種結(jié)果,而滿足條件的結(jié)果為:共有11種結(jié)果,根據(jù)古典概型概率公式,可得所求概率.故答案為:本題考查了古典概型的應(yīng)用,考查了學(xué)生綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.15.【解析】
計(jì)算出角的取值范圍,結(jié)合正弦定理可求得的取值范圍.【詳解】,則,所以,,由正弦定理,.因此,的取值范圍是.故答案為:.本題主要考查了正弦定理,正弦函數(shù)圖象和性質(zhì),考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.16.【解析】
由題意可設(shè),,,由向量的坐標(biāo)運(yùn)算,以及恒成立思想可設(shè),的最小值即為點(diǎn),到直線的距離,求得,可得不大于.【詳解】解:,且,可設(shè),,,,可得,可得的終點(diǎn)均在直線上,由于為任意實(shí)數(shù),可得時(shí),的最小值即為點(diǎn)到直線的距離,可得,對于任意的實(shí)數(shù),不等式,可得,故答案為:.本題主要考查向量的模的求法,以及兩點(diǎn)的距離的運(yùn)用,考查直線方程的運(yùn)用,以及點(diǎn)到直線的距離,考查運(yùn)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)或【解析】
(1)根據(jù)解析式求得導(dǎo)函數(shù),設(shè)切點(diǎn)坐標(biāo)為,結(jié)合導(dǎo)數(shù)的幾何意義可得方程,構(gòu)造函數(shù),并求得,由導(dǎo)函數(shù)求得有最小值,進(jìn)而可知由唯一零點(diǎn),即可代入求得的值;(2)將解析式代入,結(jié)合零點(diǎn)定義化簡并分離參數(shù)得,構(gòu)造函數(shù),根據(jù)題意可知直線與曲線有兩個(gè)交點(diǎn);求得并令求得極值點(diǎn),列出表格判斷的單調(diào)性與極值,即可確定與有兩個(gè)交點(diǎn)時(shí)的取值范圍.【詳解】(1)依題意,,,設(shè)切點(diǎn)為,,故,故,則;令,,故當(dāng)時(shí),,當(dāng)時(shí),,故當(dāng)時(shí),函數(shù)有最小值,由于,故有唯一實(shí)數(shù)根0,即,則;(2)由,得.所以“在區(qū)間上有兩個(gè)零點(diǎn)”等價(jià)于“直線與曲線在有兩個(gè)交點(diǎn)”;由于.由,解得,.當(dāng)變化時(shí),與的變化情況如下表所示:30+0極小值極大值所以在,上單調(diào)遞減,在上單調(diào)遞增.又因?yàn)?,,,,故?dāng)或時(shí),直線與曲線在上有兩個(gè)交點(diǎn),即當(dāng)或時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn).本題考查了導(dǎo)數(shù)的幾何意義應(yīng)用,由切線方程求參數(shù)值,構(gòu)造函數(shù)法求參數(shù)的取值范圍,函數(shù)零點(diǎn)的意義及綜合應(yīng)用,屬于難題.18.(1)(2)是,【解析】
(1)設(shè),根據(jù)條件可求出的坐標(biāo),再利用在橢圓上,代入橢圓方程求出即可;(2)設(shè)運(yùn)用勾股定理和點(diǎn)滿足橢圓方程,求出,,再利用焦半徑公式表示出,進(jìn)而求出周長為定值.【詳解】(1)設(shè),因?yàn)?即則,即,因?yàn)榫谏?代入得,解得,所以橢圓的方程為;(2)由(1)得,作出示意圖,設(shè)切點(diǎn)為,則,同理即,所以,又,則的周長,所以周長為定值.標(biāo)準(zhǔn)方程的求解,橢圓中的定值問題,考查焦半徑公式的運(yùn)用,考查邏輯推理能力和運(yùn)算求解能力,難度較難.19.(1)見解析;(2)證明見解析.【解析】
(1),分,,,四種情況討論即可;(2)問題轉(zhuǎn)化為,利用導(dǎo)數(shù)找到與即可證明.【詳解】(1).①當(dāng)時(shí),恒成立,當(dāng)時(shí),;當(dāng)時(shí),,所以,在上是減函數(shù),在上是增函數(shù).②當(dāng)時(shí),,.當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).③當(dāng)時(shí),,則在上是減函數(shù).④當(dāng)時(shí),,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).(2)由題意,得.由(1)知,當(dāng),時(shí),,.令,,故在上是減函數(shù),有,所以,從而.,,則,令,顯然在上是增函數(shù),且,,所以存在使,且在上是減函數(shù),在上是增函數(shù),,所以,所以,命題成立.本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及證明不等式的問題,考查學(xué)生邏輯推理能力,是一道較難的題.20.(1);(2)存在,且方程為或.【解析】
(1)依題意列出關(guān)于a,b,c的方程組,求得a,b,進(jìn)而可得到橢圓方程;(2)聯(lián)立直線和橢圓得到,要使以為直徑的圓過橢圓的左頂點(diǎn),則,結(jié)合韋達(dá)定理可得到參數(shù)值.【詳解】(1)直線的一般方程為.依題意,解得,故橢圓的方程式為.(2)假若存在這樣的直線,當(dāng)斜率不存在時(shí),以為直徑的圓顯然不經(jīng)過橢圓的左頂點(diǎn),所以可設(shè)直線的斜率為,則直線的方程為.由,得.由,得.記,的坐標(biāo)分別為,,則,,而.要使以為直徑的圓過橢圓的左頂點(diǎn),則,即,所以,整理解得或,所以存在過的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過橢圓的左頂點(diǎn),直線的方程為或.本題主要考查直線與圓錐曲線位置關(guān)系,所使用方法為韋達(dá)定理法:因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉(zhuǎn)化為方程組關(guān)系問題,最終轉(zhuǎn)化為一元二次方程問題,故用韋達(dá)定理及判別式是解決圓錐曲線問題的重點(diǎn)方法之一,尤其是弦中點(diǎn)問題,弦長問題,可用韋達(dá)定理直接解決,但應(yīng)注意不要忽視判別式的作用.21.(1);(2)【解析】
(1)根據(jù)同角三角函數(shù)式可求得,結(jié)合正弦和角公式求得,即可求得,進(jìn)而由三角函數(shù)(2)設(shè)根據(jù)余弦定理及基本不等式,可求得的最大值,結(jié)合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數(shù)關(guān)系式可得,則,則,所以.(2)設(shè)在中由余弦定理可得,代入可得,由基本不等式可知,即,當(dāng)且僅當(dāng)時(shí)取等號,由三角形面積公式可得,所以四邊形面積的最大值為.本題考查了正弦和角公式化簡三角函數(shù)式的應(yīng)用,余弦定理及不等式式求最值的綜合應(yīng)用,屬于中檔題.22.(1)證明見解析(2)【解析】
(1)由已知線面垂直得,結(jié)合菱形對角線垂直,可證得線面垂直;(2)由已知知兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標(biāo)系如圖所示,由已知線面垂直知
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度物業(yè)管理系統(tǒng)技術(shù)升級與維護(hù)合同3篇
- 二零二五年度高端不銹鋼門工程安裝與維護(hù)服務(wù)合同3篇
- 二零二五版控制權(quán)爭奪下的企業(yè)并購法律服務(wù)合同3篇
- 二零二五年范文合同失效通知模板與說明3篇
- 二零二五版企業(yè)訂餐福利管理合同3篇
- 2025年P(guān)VC管材綠色生產(chǎn)供應(yīng)鏈采購銷售合同3篇
- 居民住宅改為商用合同(2篇)
- 二零二五年房屋租賃合同出租人租賃房屋租賃權(quán)租賃合同9篇
- 二零二五年度電子信息材料采購合同范本3篇
- 2025年度生物制藥行業(yè)質(zhì)量控制合同3篇
- 湖南省建設(shè)工程施工階段監(jiān)理服務(wù)費(fèi)計(jì)費(fèi)規(guī)則【實(shí)用文檔】doc
- GB/T 6913-2008鍋爐用水和冷卻水分析方法磷酸鹽的測定
- GB/T 18717.2-2002用于機(jī)械安全的人類工效學(xué)設(shè)計(jì)第2部分:人體局部進(jìn)入機(jī)械的開口尺寸確定原則
- 教案:第三章 公共管理職能(《公共管理學(xué)》課程)
- 中國文化概論(第三版)全套課件
- 117-鋼結(jié)構(gòu)工程質(zhì)量常見問題與管控措施
- SHS5230三星指紋鎖中文說明書
- 諾和關(guān)懷俱樂部對外介紹
- 保定市縣級地圖PPT可編輯矢量行政區(qū)劃(河北省)
- 新蘇教版科學(xué)六年級下冊全冊教案(含反思)
- 供方注冊指南-ZTE
評論
0/150
提交評論