版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
專題2-5函數(shù)導數(shù)壓軸小題歸類目錄TOC\o"1-1"\h\u題型01整數(shù)解型 1題型02函數(shù)零點構(gòu)造型 2題型03同構(gòu):方程零點型同構(gòu) 3題型04同構(gòu):不等式型同構(gòu)求參 4題型05恒成立求參:移項討論型 5題型06恒成立求參:虛設(shè)零點型 5題型07“倍縮”型函數(shù)求參數(shù) 6題型08恒成立求參:“等式”型 7題型09雙變量型不等式范圍最值 8題型10雙變量型:凸凹反轉(zhuǎn)型 9題型11多參型:代換型 10題型12多參型:二次構(gòu)造放縮型 10題型13多參型:韋達定理求參型 11題型14多參型:單峰函數(shù)絕對值型 12題型15導數(shù)與三角函數(shù) 12高考練場 13題型01整數(shù)解型【解題攻略】整數(shù)解,屬于導數(shù)研究函數(shù)的性質(zhì),根據(jù)題意求得整數(shù)型參數(shù)的取值范圍,或者整數(shù)解求參數(shù)范圍等,涉及函數(shù)的零點問題、方程解的個數(shù)問題、函數(shù)圖像交點個數(shù)問題,一般先通過導數(shù)研究函數(shù)的單調(diào)性、最大值、最小值、變化趨勢等,再借助函數(shù)的大致圖象判斷零點、方程根、交點的情況,歸根到底還是研究函數(shù)的性質(zhì),如單調(diào)性、極值,然后通過數(shù)形結(jié)合的思想找到解題的思路.【典例1-1】(2021·湖南懷化·二模(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若對任意的SKIPIF1<0,存在實數(shù)SKIPIF1<0滿足SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的最大值是A.3 B.2 C.4 D.5【典例1-2】.(2020·黑龍江實驗中學三模(理))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在極值點,且SKIPIF1<0恰好有唯一整數(shù)解,則的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】在關(guān)于SKIPIF1<0的不等式SKIPIF1<0(其中SKIPIF1<0SKIPIF1<0為自然對數(shù)的底數(shù))的解集中,有且僅有兩個大于2的整數(shù),則實數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(黑龍江省佳木斯市第一中學2021-2022學年高三上學期第四次調(diào)研考試理科數(shù)學試題)已知偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,若關(guān)于x的不等式SKIPIF1<0在SKIPIF1<0上有且只有150個整數(shù)解,則實數(shù)t的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(四川省成都石室中學高三下學期考試數(shù)學(理)試題)已知函數(shù)SKIPIF1<0,若關(guān)于SKIPIF1<0的不等式SKIPIF1<0恰有兩個整數(shù)解,則實數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0題型02函數(shù)零點構(gòu)造型【解題攻略】函數(shù)零點構(gòu)造型,涉及到函數(shù)的性質(zhì)應(yīng)用:與對稱有關(guān)的常用結(jié)論:①若點SKIPIF1<0,SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0;②若SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0;③若SKIPIF1<0,則SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱;④若SKIPIF1<0,則SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱.數(shù)形結(jié)合法解決零點問題:①零點個數(shù):幾個零點②幾個零點的和③幾個零點的積.【典例1-1】(2020·黑龍江實驗中學高三階段練習(理))已知函數(shù)SKIPIF1<0,若實數(shù)SKIPIF1<0互不相等,且SKIPIF1<0,則SKIPIF1<0的取值范圍為______.【典例1-2】.(2020·吉林吉林·三模)已知函數(shù)SKIPIF1<0,若實數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍為___________.【變式1-1】(2022·云南省玉溪第一中學高三)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0的取值范圍是______.【變式1-2】.(2022·浙江·高三專題練習)設(shè)函數(shù)SKIPIF1<0已知SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0的最小值為SKIPIF1<0,則a的值為___________.【變式1-3】.(2021·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若方程SKIPIF1<0有4個不同的實根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是______.題型03同構(gòu):方程零點型同構(gòu)【解題攻略】對于既含有指數(shù)式又含有對數(shù)式的等式或不等式,直接求導會出現(xiàn)越求導式子越復雜的情況,此時可通過同構(gòu)函數(shù),再利用函數(shù)的單調(diào)性,把問題轉(zhuǎn)化為較為簡單的函數(shù)的導數(shù)問題.導函數(shù)求解參數(shù)取值范圍,當函數(shù)中同時出現(xiàn)SKIPIF1<0與SKIPIF1<0,通常使用同構(gòu)來進行求解,難點是尋找構(gòu)造突破口。如SKIPIF1<0變形得到SKIPIF1<0,從而構(gòu)造SKIPIF1<0進行求解.常見同構(gòu):①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0④SKIPIF1<0;SKIPIF1<0【典例1-1】(2024·全國·模擬預(yù)測)已知m是方程SKIPIF1<0的一個根,則SKIPIF1<0(
)A.1 B.2 C.3 D.5【典例1-2】(2023·全國·模擬預(yù)測)若方程SKIPIF1<0在SKIPIF1<0上有實根,則a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2023·全國·模擬預(yù)測)已知SKIPIF1<0是方程SKIPIF1<0的一個根,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.3【變式1-2】(2023上·四川綿陽·高三四川省綿陽實驗高級中學??茧A段練習)已知SKIPIF1<0且SKIPIF1<0則一定有(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2023上·山東日照·高三統(tǒng)考開學考試)已知正實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.0 B.1 C.2 D.3題型04同構(gòu):不等式型同構(gòu)求參【解題攻略】(1)乘積模型:SKIPIF1<0(2)商式模型:SKIPIF1<0(3)和差模型:SKIPIF1<0【典例1-1】(2023·全國·安陽市第二中學校聯(lián)考模擬預(yù)測)已知關(guān)于x的不等式SKIPIF1<0在SKIPIF1<0上恒成立,則正數(shù)m的最大值為(
)A.SKIPIF1<0 B.0 C.e D.1【典例1-2】(2020上·北京·高三統(tǒng)考階段練習)已知不等式SKIPIF1<0對SKIPIF1<0恒成立,則實數(shù)a的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2022下·河南·高三校聯(lián)考階段練習)若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0上恒成立,則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2022上·浙江紹興·高三統(tǒng)考期末)已知關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,其中SKIPIF1<0為自然對數(shù)的底數(shù),SKIPIF1<0,則(
)A.SKIPIF1<0既有最小值,也有最大值 B.SKIPIF1<0有最小值,沒有最大值C.SKIPIF1<0有最大值,沒有最小值 D.SKIPIF1<0既沒有最小值,也沒有最大值【變式1-3】(2022上·安徽亳州·高三統(tǒng)考期末)已知SKIPIF1<0,若SKIPIF1<0時,SKIPIF1<0恒成立,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型05恒成立求參:移項討論型【解題攻略】一般地,已知函數(shù)SKIPIF1<0,SKIPIF1<0(1)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(3)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(4)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;【典例1-1】(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0有唯一零點,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】.(2022·全國·高三專題練習)若對任意SKIPIF1<0,不等式SKIPIF1<0恒成立,則實數(shù)a的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2020·福建省福州第一中學高三階段練習(理))已知SKIPIF1<0,且SKIPIF1<0時,SKIPIF1<0恒成立,則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0有最小值,則實數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2022上·江蘇揚州·高三統(tǒng)考階段練習)當SKIPIF1<0時,不等式SKIPIF1<0有解,則實數(shù)m的范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型06恒成立求參:虛設(shè)零點型【解題攻略】虛設(shè)零點法:涉及到導函數(shù)有零點但是求解相對比較繁雜甚至無法求解的情形時,可以將這個零點只設(shè)出來而不必求出來,然后尋找一種整體的轉(zhuǎn)換和過度,再結(jié)合其他條件,進行代換變形,從而最重獲得問題的解決(1)、整體代換:把超越式子(多為指數(shù)和對數(shù)式子)轉(zhuǎn)化為普通的(如二次函數(shù)一次哈數(shù)等)可解式子,如比值代換等等。(2)、反代消參:反解參數(shù)代入,構(gòu)造單一變量的函數(shù)。如果要求解(或者要證明)的結(jié)論與參數(shù)無關(guān),則可以通過反解參數(shù),用變量(零點)表示參數(shù),然后把函數(shù)變成關(guān)于零點的單一函數(shù),再對單一變量求導就可以解決相應(yīng)的問題。(3)留參降次(留參、消去指對等超越項):如果要求解的與參數(shù)有關(guān),則可以通過消去超越項,建立含參數(shù)的方程或者不等式。恒等變形或者化簡方向時保留參數(shù),通過“降次”變換,一直降到不可再降為止,再結(jié)合條件,求解方程或者不等式,解的相應(yīng)的參數(shù)值或者參數(shù)范圍【典例1-1】(四川省內(nèi)江市威遠中學校2022-2023學年高三上學期第三次月考數(shù)學(理)試題)已知不等式SKIPIF1<0對SKIPIF1<0恒成立,則SKIPIF1<0取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(黑龍江省哈爾濱市第六中學校2022-2023學年高三上學期10月月考數(shù)學試題)若關(guān)于SKIPIF1<0的不等式SKIPIF1<0對一切正實數(shù)SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】設(shè)實數(shù)SKIPIF1<0,若對任意SKIPIF1<0,不等式SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】已知函數(shù)SKIPIF1<0有唯一零點,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】若對任意SKIPIF1<0,不等式SKIPIF1<0恒成立,則實數(shù)a的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型07“倍縮”型函數(shù)求參數(shù)【解題攻略】如果函數(shù)SKIPIF1<0在定義域的某個區(qū)間SKIPIF1<0(SKIPIF1<0)上的值域恰為SKIPIF1<0(SKIPIF1<0),則稱函數(shù)SKIPIF1<0為SKIPIF1<0上的k倍域函數(shù),SKIPIF1<0稱為函數(shù)SKIPIF1<0的一個k倍域區(qū)間.把函數(shù)SKIPIF1<0存在區(qū)間SKIPIF1<0,使得函數(shù)SKIPIF1<0為SKIPIF1<0上的SKIPIF1<0倍域函數(shù),結(jié)合函數(shù)的單調(diào)性,轉(zhuǎn)化為SKIPIF1<0是解答的關(guān)鍵.【典例1-1】(陜西省漢中中學2019屆高三上學期第二次月考數(shù)學(理)試卷)設(shè)函數(shù)的定義域為D,若滿足條件:存在SKIPIF1<0,使SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,則稱SKIPIF1<0為“倍縮函數(shù)”.若函數(shù)SKIPIF1<0為“倍縮函數(shù)”,則實數(shù)t的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(浙江省杭州學軍中學西溪校區(qū)2020-2021學年高三3月數(shù)學試題)設(shè)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,若函數(shù)SKIPIF1<0滿足條件:存在SKIPIF1<0,使SKIPIF1<0在SKIPIF1<0上的值域是SKIPIF1<0,則SKIPIF1<0稱為“倍縮函數(shù)”,若函數(shù)SKIPIF1<0為“倍縮函數(shù)”,則實數(shù)SKIPIF1<0的取值范圍是________.【變式1-1】(2020年浙江省新高考考前原創(chuàng)沖刺卷(二))設(shè)函數(shù)SKIPIF1<0的定義域為D,若滿足條件:存在SKIPIF1<0,使SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,則稱SKIPIF1<0為“倍脹函數(shù)”.若函數(shù)SKIPIF1<0為“倍脹函數(shù)”,則實數(shù)t的取值范圍是________.【變式1-2】(河北省邢臺一中2021-2022學年高三下學期模擬數(shù)學(理)試題).設(shè)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0在區(qū)間SKIPIF1<0上的值域為SKIPIF1<0,則稱SKIPIF1<0為“SKIPIF1<0倍函數(shù)”.已知函數(shù)SKIPIF1<0為“3倍函數(shù)”,則實數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2022吉林吉林·高三階段練習(理))設(shè)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,若滿足條件:存在SKIPIF1<0,使SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),則稱SKIPIF1<0為“SKIPIF1<0倍函數(shù)”,若函數(shù)SKIPIF1<0SKIPIF1<0為“3倍函數(shù)”,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型08恒成立求參:“等式”型【解題攻略】一般地,已知函數(shù)SKIPIF1<0,SKIPIF1<0若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0,則SKIPIF1<0的值域是SKIPIF1<0值域的子集.【典例1-1】(2021·四川·綿陽中學模擬預(yù)測(文))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,使得SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】.(2022·福建·泉州市城東中學高三)已知SKIPIF1<0,SKIPIF1<0是函數(shù)SKIPIF1<0的兩個極值點,且SKIPIF1<0,當SKIPIF1<0時,不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2022·四川成都·高三階段練習(文))設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0.若對任意的正實數(shù)SKIPIF1<0,SKIPIF1<0,不等式SKIPIF1<0恒成立,則a的最小值為(
)A.0 B.1 C.SKIPIF1<0 D.e【變式1-2】(2022·河南安陽·高三階段練習)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0使得SKIPIF1<0成立,則實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(江蘇省南京航空航天大學附屬高級中學2020-2021學年高三數(shù)學試題)已知函數(shù)SKIPIF1<0,SKIPIF1<0,對任意的SKIPIF1<0,總存在SKIPIF1<0使得SKIPIF1<0成立,則a的范圍為_________.題型09雙變量型不等式范圍最值【解題攻略】一般地,已知函數(shù)SKIPIF1<0,SKIPIF1<0不等關(guān)系(1)若SKIPIF1<0,SKIPIF1<0,總有SKIPIF1<0成立,故SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(3)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(4)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0.【典例1-1】(2023下·四川眉山·高三眉山市彭山區(qū)第一中學校考階段練習)已知函數(shù)SKIPIF1<0有兩個零點SKIPIF1<0,且SKIPIF1<0,則下列說法不正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0有極小值點【典例1-2】(2023下·福建福州·高三福建省福州第一中學??迹┮阎瘮?shù)SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2019下·河南鶴壁·高三鶴壁高中??茧A段練習)已知函數(shù)SKIPIF1<0,SKIPIF1<0,曲線SKIPIF1<0上總存在兩點SKIPIF1<0,SKIPIF1<0,使曲線SKIPIF1<0在SKIPIF1<0兩點處的切線互相平行,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2019下·山西長治·高三統(tǒng)考階段練習)若方程x﹣2lnx+a=0存在兩個不相等的實數(shù)根x1和x2,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2021上·高三單元測試)已知直線SKIPIF1<0分別與函數(shù)SKIPIF1<0和SKIPIF1<0的圖象交于點SKIPIF1<0,SKIPIF1<0,則下列結(jié)論錯誤的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型10雙變量型:凸凹反轉(zhuǎn)型【解題攻略】凸凹翻轉(zhuǎn)型常見思路,如下圖轉(zhuǎn)化為兩個函數(shù)的最值問題是關(guān)鍵?!镜淅?-1】(2023·全國·高三專題練習)設(shè)大于1的兩個實數(shù)a,b滿足SKIPIF1<0,則正整數(shù)n的最大值為(
).A.7 B.9 C.11 D.12【典例1-2】(2023上·江蘇蘇州·高三統(tǒng)考階段練習)已知正數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【變式1-1】.已知實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的值為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(安徽省六安市第一中學、合肥八中、阜陽一中三校2021-2022學年高三上學期10月聯(lián)考數(shù)學試題)已知函數(shù)SKIPIF1<0有兩個零點,則SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型11多參型:代換型【解題攻略】不等式中,可以借助對數(shù)均值不等式解決,完整的對數(shù)均值不等式為:SKIPIF1<0,可用兩邊同除SKIPIF1<0,令SKIPIF1<0整體換元的思想來構(gòu)造函數(shù),證明不等式成立求解參數(shù)【典例1-1】(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0,對于正實數(shù)a,若關(guān)于t的方程SKIPIF1<0恰有三個不同的正實數(shù)根,則a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2020·江蘇·高三專題練習)若對任意正實數(shù)SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是_________【變式1-1】(2020·全國·高三專題練習(文))設(shè)三次函數(shù)SKIPIF1<0,(a,b,c為實數(shù)且SKIPIF1<0)的導數(shù)為SKIPIF1<0,記SKIPIF1<0,若對任意SKIPIF1<0,不等式SKIPIF1<0恒成立,則SKIPIF1<0的最大值為____________【變式1-2】已知存在SKIPIF1<0,若要使等式SKIPIF1<0成立(e=2.71828…),則實數(shù)SKIPIF1<0的可能的取值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.0【變式1-3】(江蘇省揚州中學2022-2023學年高三考試數(shù)學)若正實數(shù)SKIPIF1<0滿足SKIPIF1<0,則函數(shù)SKIPIF1<0的零點的最大值為______.題型12多參型:二次構(gòu)造放縮型【解題攻略】多參數(shù)型求參數(shù)范圍,或者多參型最值,難點是能夠兩次構(gòu)造函數(shù),利用導數(shù)求出相應(yīng)函數(shù)的最值【典例1-1】(2023·全國·高三專題練習)已知關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2021·高三單元測試)已知SKIPIF1<0為自然對數(shù)的底數(shù),SKIPIF1<0為實數(shù),且不等式SKIPIF1<0對任意的SKIPIF1<0恒成立.則當SKIPIF1<0取最大值時,SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2021·四川成都·統(tǒng)考模擬預(yù)測)設(shè)SKIPIF1<0,SKIPIF1<0,若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2022·四川南充·高三四川省南充高級中學??迹┮阎瘮?shù)SKIPIF1<0,若SKIPIF1<0時,恒有SKIPIF1<0,則SKIPIF1<0的最大值為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2023·浙江·高三路橋中學校聯(lián)考)已知SKIPIF1<0,SKIPIF1<0,關(guān)于SKIPIF1<0的不等式SKIPIF1<0無實數(shù)解,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型13多參型:韋達定理求參型【典例1-1】(2023上·北京順義·高三北京市順義區(qū)第一中學校考)若函數(shù)SKIPIF1<0既有極大值也有極小值,則錯誤的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2023上·江蘇蘇州·高三蘇州中學??奸_學考試)若函數(shù)SKIPIF1<0既有極大值也有極小值,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2023·山東煙臺·統(tǒng)考二模)若函數(shù)SKIPIF1<0有兩個極值點SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2021·浙江·模擬預(yù)測)已知SKIPIF1<0在SKIPIF1<0上恰有兩個極值點SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2023·河南開封·高三統(tǒng)考)已知函數(shù)SKIPIF1<0的兩個極值點分別是SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0C.存在實數(shù)a,使得SKIPIF1<0 D.SKIPIF1<0題型14多參型:單峰函數(shù)絕對值型【典例1-1】(安徽省阜陽市太和第一中學2019-2020學年高三數(shù)學試題)若存在實數(shù)SKIPIF1<0,對任意實數(shù)SKIPIF1<0,使不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍為________.【典例1-2】(中學生標準學術(shù)能力診斷性測試2019-2020學年高三1月(一卷)數(shù)學(理)試題)設(shè)函數(shù)SKIPIF1<0,若對任意的實數(shù)SKIPIF1<0和SKIPIF1<0,總存在SKIPIF1<0,使得SKIPIF1<0,則實數(shù)SKIPIF1<0的最大值為__________.【變式1-1】設(shè)函數(shù)SKIPIF1<0,若對任意的實數(shù)SKIPIF1<0,總存在SKIPIF1<0使得SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍是________.【變式1-2】若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,對任意SKIPIF1<0,總存在唯一的SKIPIF1<0,使得SKIPIF1<0成立,則實數(shù)a的取值范圍____________.【變式1-3】(浙江省溫州市2021-2022學年高三適應(yīng)性測試一模數(shù)學試題)設(shè)函數(shù)SKIPIF1<0.若SKIPIF1<0在SKIPIF1<0上的最大值為2,則實數(shù)a所有可能的取值組成的集合是________.題型15導數(shù)與三角函數(shù)【典例1-1】函數(shù)SKIPIF1<0的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】已知函數(shù)SKIPIF1<0,若對于任意的SKIPIF1<0,均有SKIPIF1<0成立,則實數(shù)a的最小值為A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.3【變式1-1】函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0圖象的所有交點的橫坐標之和為___________.【變式1-2】已知SKIPIF1<0,且SKIPIF1<0,其中e為自然對數(shù)的底數(shù),則下列選項中一定成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】已知函數(shù)SKIPIF1<0,若f(x)在R上單調(diào),則a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0高考練場1.(黑龍江省實驗校2020屆高三第三次模擬考試數(shù)學(理)試題)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在極值點,且SKIPIF1<0恰好有唯一整數(shù)解,則的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2021·江蘇·高三開學考試)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為___________.3.(2023·廣東梅州·統(tǒng)考三模)已知實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.1 B.2 C.4 D.84.(2021·廣東深圳·高三練習)設(shè)SKIPIF1<0,若存在正實數(shù)SKIPIF1<0,使得不等式SKIPIF1<0成立,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2021下·四川眉山··高三練習)若SKIPIF1<0,SKIPIF1<0恒
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江省杭州求是高級中學2025屆高三上物理期中檢測模擬試題含解析
- 2025屆四川省資陽市物理高一第一學期期末考試模擬試題含解析
- 廣西欽州市浦北縣2025屆高三物理第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析
- 2025屆西藏自治區(qū)昌都市第三高級中學物理高一上期中預(yù)測試題含解析
- 2025屆貴州六盤水育才中學高一物理第一學期期中達標測試試題含解析
- 山西省陽泉市(2024年-2025年小學五年級語文)統(tǒng)編版專題練習(上學期)試卷及答案
- 情境寫作講解課件
- 急性闌尾炎超聲診斷護理課件
- 2024年藝術(shù)吊頂采購安裝合同范本
- 2024年一樓工廠出售合同范本
- 人教版九年級化學上冊第六單元課題3-二氧化碳和一氧化碳說課稿
- 中國成人患者腸外腸內(nèi)營養(yǎng)臨床應(yīng)用指南(2023版)
- 物業(yè)管理應(yīng)急響應(yīng)能力提升及案例分析
- 森林防火應(yīng)對工作預(yù)案
- 電器設(shè)備安裝安全操作規(guī)程
- 氣液兩相流講稿
- 北師大版(2019)高中英語必修第三冊單詞表默寫練習(英譯中、中譯英)
- 2023鐵礦石 釷含量的測定偶氮胂Ⅲ分光光度法
- 《中國藥典》2023年版目錄
- 第五章一元一次方程微專題-應(yīng)用題表格類訓練 (北師大版數(shù)學七年級上冊)
- 人工湖清理淤泥施工方案
評論
0/150
提交評論