2024-2025學(xué)年北京二中高三下-第四次月考數(shù)學(xué)試題試卷含解析_第1頁
2024-2025學(xué)年北京二中高三下-第四次月考數(shù)學(xué)試題試卷含解析_第2頁
2024-2025學(xué)年北京二中高三下-第四次月考數(shù)學(xué)試題試卷含解析_第3頁
2024-2025學(xué)年北京二中高三下-第四次月考數(shù)學(xué)試題試卷含解析_第4頁
2024-2025學(xué)年北京二中高三下-第四次月考數(shù)學(xué)試題試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024-2025學(xué)年北京二中高三下-第四次月考數(shù)學(xué)試題試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.2.在三棱錐中,,,則三棱錐外接球的表面積是()A. B. C. D.3.我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)(即質(zhì)數(shù))的和”,如,.在不超過20的素數(shù)中,隨機(jī)選取兩個不同的數(shù),其和等于20的概率是()A. B. C. D.以上都不對4.已知復(fù)數(shù)z滿足,則z的虛部為()A. B.i C.–1 D.15.已知甲、乙兩人獨(dú)立出行,各租用共享單車一次(假定費(fèi)用只可能為、、元).甲、乙租車費(fèi)用為元的概率分別是、,甲、乙租車費(fèi)用為元的概率分別是、,則甲、乙兩人所扣租車費(fèi)用相同的概率為()A. B. C. D.6.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或17.若集合,,則A. B. C. D.8.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.39.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他和高斯、牛頓并列被稱為世界三大數(shù)學(xué)家.據(jù)說,他自己覺得最為滿意的一個數(shù)學(xué)發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個結(jié)論,要求后人在他的墓碑上刻著一個圓柱容器里放了一個球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.10.若實(shí)數(shù)滿足不等式組,則的最大值為()A. B. C.3 D.211.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,則的最小值為()A. B. C. D.12.設(shè)是虛數(shù)單位,復(fù)數(shù)()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)數(shù)列的前n項(xiàng)和為,且,若,則______________.14.某四棱錐的三視圖如圖所示,那么此四棱錐的體積為______.15.已知函數(shù),則關(guān)于的不等式的解集為_______.16.若橢圓:的一個焦點(diǎn)坐標(biāo)為,則的長軸長為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,四邊形是矩形,,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面平面;(2)求二面角的余弦值.18.(12分)已知函數(shù).(1)求函數(shù)f(x)的最小正周期;(2)求在上的最大值和最小值.19.(12分)(Ⅰ)證明:;(Ⅱ)證明:();(Ⅲ)證明:.20.(12分)[2018·石家莊一檢]已知函數(shù).(1)若,求函數(shù)的圖像在點(diǎn)處的切線方程;(2)若函數(shù)有兩個極值點(diǎn),,且,求證:.21.(12分)設(shè)為坐標(biāo)原點(diǎn),動點(diǎn)在橢圓:上,該橢圓的左頂點(diǎn)到直線的距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓外一點(diǎn)滿足,平行于軸,,動點(diǎn)在直線上,滿足.設(shè)過點(diǎn)且垂直的直線,試問直線是否過定點(diǎn)?若過定點(diǎn),請寫出該定點(diǎn),若不過定點(diǎn)請說明理由.22.(10分)某校為了解校園安全教育系列活動的成效,對全校學(xué)生進(jìn)行一次安全意識測試,根據(jù)測試成績評定“合格”、“不合格”兩個等級,同時對相應(yīng)等級進(jìn)行量化:“合格”記分,“不合格”記分.現(xiàn)隨機(jī)抽取部分學(xué)生的成績,統(tǒng)計(jì)結(jié)果及對應(yīng)的頻率分布直方圖如下所示:等級不合格合格得分頻數(shù)624(Ⅰ)若測試的同學(xué)中,分?jǐn)?shù)段內(nèi)女生的人數(shù)分別為,完成列聯(lián)表,并判斷:是否有以上的把握認(rèn)為性別與安全意識有關(guān)?是否合格性別不合格合格總計(jì)男生女生總計(jì)(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中,共選取人進(jìn)行座談,現(xiàn)再從這人中任選人,記所選人的量化總分為,求的分布列及數(shù)學(xué)期望;(Ⅲ)某評估機(jī)構(gòu)以指標(biāo)(,其中表示的方差)來評估該校安全教育活動的成效,若,則認(rèn)定教育活動是有效的;否則認(rèn)定教育活動無效,應(yīng)調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?附表及公式:,其中.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點(diǎn):本題主要考查三視圖及幾何體體積的計(jì)算.2.B【解析】

取的中點(diǎn),連接、,推導(dǎo)出,設(shè)設(shè)球心為,和的中心分別為、,可得出平面,平面,利用勾股定理計(jì)算出球的半徑,再利用球體的表面積公式可得出結(jié)果.【詳解】取的中點(diǎn),連接、,由和都是正三角形,得,,則,則,由勾股定理的逆定理,得.設(shè)球心為,和的中心分別為、.由球的性質(zhì)可知:平面,平面,又,由勾股定理得.所以外接球半徑為.所以外接球的表面積為.故選:B.本題考查三棱錐外接球表面積的計(jì)算,解題時要分析幾何體的結(jié)構(gòu),找出球心的位置,并以此計(jì)算出球的半徑長,考查推理能力與計(jì)算能力,屬于中等題.3.A【解析】

首先確定不超過的素數(shù)的個數(shù),根據(jù)古典概型概率求解方法計(jì)算可得結(jié)果.【詳解】不超過的素數(shù)有,,,,,,,,共個,從這個素數(shù)中任選個,有種可能;其中選取的兩個數(shù),其和等于的有,,共種情況,故隨機(jī)選出兩個不同的數(shù),其和等于的概率.故選:.本題考查古典概型概率問題的求解,屬于基礎(chǔ)題.4.C【解析】

利用復(fù)數(shù)的四則運(yùn)算可得,即可得答案.【詳解】∵,∴,∴,∴復(fù)數(shù)的虛部為.故選:C.本題考查復(fù)數(shù)的四則運(yùn)算、虛部概念,考查運(yùn)算求解能力,屬于基礎(chǔ)題.5.B【解析】

甲、乙兩人所扣租車費(fèi)用相同即同為1元,或同為2元,或同為3元,由獨(dú)立事件的概率公式計(jì)算即得.【詳解】由題意甲、乙租車費(fèi)用為3元的概率分別是,∴甲、乙兩人所扣租車費(fèi)用相同的概率為.故選:B.本題考查獨(dú)立性事件的概率.掌握獨(dú)立事件的概率乘法公式是解題基礎(chǔ).6.D【解析】

求得直線的斜率,利用曲線的導(dǎo)數(shù),求得切點(diǎn)坐標(biāo),代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點(diǎn)為,代入直線方程得,解得或1.故選:D本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.7.C【解析】

解一元次二次不等式得或,利用集合的交集運(yùn)算求得.【詳解】因?yàn)榛?,,所以,故選C.本題考查集合的交運(yùn)算,屬于容易題.8.B【解析】

根據(jù)極值點(diǎn)處的導(dǎo)數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計(jì)算即可.【詳解】解:由已知得,,,經(jīng)檢驗(yàn)滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.本題考查了導(dǎo)數(shù)極值的性質(zhì)以及利用導(dǎo)數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問題的基本思路,屬于中檔題.9.C【解析】

設(shè)球的半徑為R,根據(jù)組合體的關(guān)系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設(shè)球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C本題主要考查組合體的表面積和體積,還考查了對數(shù)學(xué)史了解,屬于基礎(chǔ)題.10.C【解析】

作出可行域,直線目標(biāo)函數(shù)對應(yīng)的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當(dāng)過點(diǎn)時,取得最大值1.故選:C.本題考查簡單的線性規(guī)劃問題,解題關(guān)鍵是作出可行域,本題要注意可行域不是一個封閉圖形.11.D【解析】

由,可求出等比數(shù)列的通項(xiàng)公式,進(jìn)而可知當(dāng)時,;當(dāng)時,,從而可知的最小值為,求解即可.【詳解】設(shè)等比數(shù)列的公比為,則,由題意得,,得,解得,得.當(dāng)時,;當(dāng)時,,則的最小值為.故選:D.本題考查等比數(shù)列的通項(xiàng)公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計(jì)算求解能力,屬于中檔題.12.D【解析】

利用復(fù)數(shù)的除法運(yùn)算,化簡復(fù)數(shù),即可求解,得到答案.【詳解】由題意,復(fù)數(shù),故選D.本題主要考查了復(fù)數(shù)的除法運(yùn)算,其中解答中熟記復(fù)數(shù)的除法運(yùn)算法則是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.9【解析】

用換中的n,得,作差可得,從而數(shù)列是等比數(shù)列,再由即可得到答案.【詳解】由,得,兩式相減,得,即;又,解得,所以數(shù)列為首項(xiàng)為-3、公比為3的等比數(shù)列,所以.故答案為:9.本題考查已知與的關(guān)系求數(shù)列通項(xiàng)的問題,要注意n的范圍,考查學(xué)生運(yùn)算求解能力,是一道中檔題.14.【解析】

利用三視圖判斷幾何體的形狀,然后通過三視圖的數(shù)據(jù)求解幾何體的體積.【詳解】如圖:此四棱錐的高為,底面是長為,寬為2的矩形,所以體積.所以本題答案為.本題考查幾何體與三視圖的對應(yīng)關(guān)系,幾何體體積的求法,考查空間想象能力與計(jì)算能力.解決本類題目的關(guān)鍵是準(zhǔn)確理解幾何體的定義,真正把握幾何體的結(jié)構(gòu)特征,可以根據(jù)條件構(gòu)建幾何模型,在幾何模型中進(jìn)行判斷.15.【解析】

判斷的奇偶性和單調(diào)性,原不等式轉(zhuǎn)化為,運(yùn)用單調(diào)性,可得到所求解集.【詳解】令,易知函數(shù)為奇函數(shù),在R上單調(diào)遞增,,即,∴∴,即x>故答案為:本題考查函數(shù)的奇偶性和單調(diào)性的運(yùn)用:解不等式,考查轉(zhuǎn)化思想和運(yùn)算能力,屬于中檔題.16.【解析】

由焦點(diǎn)坐標(biāo)得從而可求出,繼而得到橢圓的方程,即可求出長軸長.【詳解】解:因?yàn)橐粋€焦點(diǎn)坐標(biāo)為,則,即,解得或由表示的是橢圓,則,所以,則橢圓方程為所以.故答案為:.本題考查了橢圓的標(biāo)準(zhǔn)方程,考查了橢圓的幾何意義.本題的易錯點(diǎn)是忽略,從而未對的兩個值進(jìn)行取舍.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】

(1)取中點(diǎn),中點(diǎn),連接,,.設(shè)交于,則為的中點(diǎn),連接.通過證明,證得平面,由此證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)取中點(diǎn),中點(diǎn),連接,,.設(shè)交于,則為的中點(diǎn),連接.設(shè),則,,∴.由已知,,∴平面,∴.∵,∴,∵,∴平面,∵平面,∴平面平面.(2)由(1)及已知可得平面,建立如圖所示的空間坐標(biāo)系,設(shè),則,,,,,,,,設(shè)平面的法向量為,∴,令得.設(shè)平面的法向量為,∴,令得,∴,∴二面角的余弦值為.本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18.(1);(2)見解析【解析】

將函數(shù)解析式化簡即可求出函數(shù)的最小正周期根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求出函數(shù)在定義域上的最大值和最小值【詳解】(Ⅰ)由題意得原式的最小正周期為.(Ⅱ),.當(dāng),即時,;當(dāng),即時,.綜上,得時,取得最小值為0;當(dāng)時,取得最大值為.本題主要考查了兩角和與差的余弦公式展開,輔助角公式,三角函數(shù)的性質(zhì)等,較為綜合,也是常考題型,需要計(jì)算正確,屬于基礎(chǔ)題19.(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】

運(yùn)用數(shù)學(xué)歸納法證明即可得到結(jié)果化簡,運(yùn)用累加法得出結(jié)果運(yùn)用放縮法和累加法進(jìn)行求證【詳解】(Ⅰ)數(shù)學(xué)歸納法證明時,①當(dāng)時,成立;②當(dāng)時,假設(shè)成立,則時所以時,成立綜上①②可知,時,(Ⅱ)由得所以;;故,又所以(Ⅲ)由累加法得:所以故本題考查了數(shù)列的綜合,運(yùn)用數(shù)學(xué)歸納法證明不等式的成立,結(jié)合已知條件進(jìn)行化簡求出化簡后的結(jié)果,利用放縮法求出不等式,然后兩邊同時取對數(shù)再進(jìn)行證明,本題較為困難。20.(1)(2)見解析【解析】試題分析:(1)分別求得和,由點(diǎn)斜式可得切線方程;(2)由已知條件可得有兩個相異實(shí)根,,進(jìn)而再求導(dǎo)可得,結(jié)合函數(shù)的單調(diào)性可得,從而得證.試題解析:(1)由已知條件,,當(dāng)時,,,當(dāng)時,,所以所求切線方程為(2)由已知條件可得有兩個相異實(shí)根,,令,則,1)若,則,單調(diào)遞增,不可能有兩根;2)若,令得,可知在上單調(diào)遞增,在上單調(diào)遞減,令解得,由有,由有,從而時函數(shù)有兩個極值點(diǎn),當(dāng)變化時,,的變化情況如下表單調(diào)遞減單調(diào)遞增單調(diào)遞減因?yàn)?,所以,在區(qū)間上單調(diào)遞增,.另解:由已知可得,則,令,則,可知函數(shù)在單調(diào)遞增,在單調(diào)遞減,若有兩個根,則可得,當(dāng)時,,所以在區(qū)間上單調(diào)遞增,所以.21.(1);(2)見解析【解析】

(1)根據(jù)點(diǎn)到直線的距離公式可求出a的值,即可得橢圓方程;(2)由題意M(x0,y0),N(x0,y1),P(2,t),根據(jù),可得y1=2y0,由,可得2x0+2y0t=6,再根據(jù)向量的運(yùn)算可得,即可證明.【詳解】(1)左頂點(diǎn)A的坐標(biāo)為(﹣a,0),∵=,∴|a﹣5|=3,解得a=2或a=8(舍去),∴橢圓C的標(biāo)準(zhǔn)方程為+y2=1,(2)由題意M(x0,y0),N(x0,y1),P(2,t),則依題意可知y1≠y0,得(x0﹣2x0,y1﹣2y0)(0,y1﹣y0)=0,整理可得y1=2y0,或y1=y(tǒng)0(舍),,得(x0,2y0)(2﹣x0,t﹣2y0)=2,整理可得2x0+2y0t=x02+4y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論