2022-2023學年廣東省江門一中數學高三上期末達標檢測試題含解析_第1頁
2022-2023學年廣東省江門一中數學高三上期末達標檢測試題含解析_第2頁
2022-2023學年廣東省江門一中數學高三上期末達標檢測試題含解析_第3頁
2022-2023學年廣東省江門一中數學高三上期末達標檢測試題含解析_第4頁
2022-2023學年廣東省江門一中數學高三上期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數滿足=1,則等于()A.- B. C.- D.2.在平面直角坐標系中,若不等式組所表示的平面區(qū)域內存在點,使不等式成立,則實數的取值范圍為()A. B. C. D.3.已知函數是定義在R上的奇函數,且滿足,當時,(其中e是自然對數的底數),若,則實數a的值為()A. B.3 C. D.4.設向量,滿足,,,則的取值范圍是A. B.C. D.5.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.86.已知函數在區(qū)間有三個零點,,,且,若,則的最小正周期為()A. B. C. D.7.關于函數,下列說法正確的是()A.函數的定義域為B.函數一個遞增區(qū)間為C.函數的圖像關于直線對稱D.將函數圖像向左平移個單位可得函數的圖像8.在復平面內,復數對應的點的坐標為()A. B. C. D.9.設函數定義域為全體實數,令.有以下6個論斷:①是奇函數時,是奇函數;②是偶函數時,是奇函數;③是偶函數時,是偶函數;④是奇函數時,是偶函數⑤是偶函數;⑥對任意的實數,.那么正確論斷的編號是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤10.將函數的圖像向右平移個單位長度,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數的圖像,若為奇函數,則的最小值為()A. B. C. D.11.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則12.已知復數滿足(其中為的共軛復數),則的值為()A.1 B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,的系數為________.14.設,則_____,(的值為______.15.在平面直角坐標系中,圓.已知過原點且相互垂直的兩條直線和,其中與圓相交于,兩點,與圓相切于點.若,則直線的斜率為_____________.16.甲、乙、丙、丁四人參加冬季滑雪比賽,有兩人獲獎.在比賽結果揭曉之前,四人的猜測如下表,其中“√”表示猜測某人獲獎,“×”表示猜測某人未獲獎,而“○”則表示對某人是否獲獎未發(fā)表意見.已知四個人中有且只有兩個人的猜測是正確的,那么兩名獲獎者是_______.甲獲獎乙獲獎丙獲獎丁獲獎甲的猜測√××√乙的猜測×○○√丙的猜測×√×√丁的猜測○○√×三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列滿足,.(1)求數列的通項公式;(2)若,求數列的前項和.18.(12分)如圖,平面四邊形中,,是上的一點,是的中點,以為折痕把折起,使點到達點的位置,且.(1)證明:平面平面;(2)求直線與平面所成角的正弦值.19.(12分)為了加強環(huán)保知識的宣傳,某學校組織了垃圾分類知識竟賽活動.活動設置了四個箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機抽取張,按照自己的判斷將每張卡片放入對應的箱子中.按規(guī)則,每正確投放一張卡片得分,投放錯誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機抽取人,將他們的得分按照、、、、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內的人數;(2)從所抽取的人中得分落在組的選手中隨機選取名選手,以表示這名選手中得分不超過分的人數,求的分布列和數學期望.20.(12分)已知函數f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對任意,都有恒成立,求實數a的取值范圍;(3)證明:對一切,都有成立.21.(12分)已知函數.(1)求不等式的解集;(2)若關于的不等式在上恒成立,求實數的取值范圍.22.(10分)設橢圓,直線經過點,直線經過點,直線直線,且直線分別與橢圓相交于兩點和兩點.(Ⅰ)若分別為橢圓的左、右焦點,且直線軸,求四邊形的面積;(Ⅱ)若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;(Ⅲ)在(Ⅱ)的條件下,判斷四邊形能否為矩形,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

設的最小正周期為,可得,則,再根據得,又,則可求出,進而可得.【詳解】解:設的最小正周期為,因為,所以,所以,所以,又,所以當時,,,因為,整理得,因為,,,則所以.故選:C.【點睛】本題考查三角形函數的周期性和對稱性,考查學生分析能力和計算能力,是一道難度較大的題目.2、B【解析】

依據線性約束條件畫出可行域,目標函數恒過,再分別討論的正負進一步確定目標函數與可行域的基本關系,即可求解【詳解】作出不等式對應的平面區(qū)域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區(qū)域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意;當時,直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數的取值范圍為,故選:B.【點睛】本題考查由目標函數有解求解參數取值范圍問題,分類討論與數形結合思想,屬于中檔題3、B【解析】

根據題意,求得函數周期,利用周期性和函數值,即可求得.【詳解】由已知可知,,所以函數是一個以4為周期的周期函數,所以,解得,故選:B.【點睛】本題考查函數周期的求解,涉及對數運算,屬綜合基礎題.4、B【解析】

由模長公式求解即可.【詳解】,當時取等號,所以本題答案為B.【點睛】本題考查向量的數量積,考查模長公式,準確計算是關鍵,是基礎題.5、B【解析】

建立平面直角坐標系,將已知條件轉化為所設未知量的關系式,再將的最小值轉化為用該關系式表達的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標系如下圖所示,設,,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【點睛】本小題主要考查向量的位置關系、向量的模,考查基本不等式的運用,考查數形結合的數學思想方法,屬于難題.6、C【解析】

根據題意,知當時,,由對稱軸的性質可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個零點,,,當時,,∴由對稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【點睛】本題考查正弦型函數的最小正周期,涉及函數的對稱性的應用,考查計算能力.7、B【解析】

化簡到,根據定義域排除,計算單調性知正確,得到答案.【詳解】,故函數的定義域為,故錯誤;當時,,函數單調遞增,故正確;當,關于的對稱的直線為不在定義域內,故錯誤.平移得到的函數定義域為,故不可能為,錯誤.故選:.【點睛】本題考查了三角恒等變換,三角函數單調性,定義域,對稱,三角函數平移,意在考查學生的綜合應用能力.8、C【解析】

利用復數的運算法則、幾何意義即可得出.【詳解】解:復數i(2+i)=2i﹣1對應的點的坐標為(﹣1,2),故選:C【點睛】本題考查了復數的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎題.9、A【解析】

根據函數奇偶性的定義即可判斷函數的奇偶性并證明.【詳解】當是偶函數,則,所以,所以是偶函數;當是奇函數時,則,所以,所以是偶函數;當為非奇非偶函數時,例如:,則,,此時,故⑥錯誤;故③④正確.故選:A【點睛】本題考查了函數的奇偶性定義,掌握奇偶性定義是解題的關鍵,屬于基礎題.10、C【解析】

根據三角函數的變換規(guī)則表示出,根據是奇函數,可得的取值,再求其最小值.【詳解】解:由題意知,將函數的圖像向右平移個單位長度,得,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數的圖像,,因為是奇函數,所以,解得,因為,所以的最小值為.故選:【點睛】本題考查三角函數的變換以及三角函數的性質,屬于基礎題.11、D【解析】

利用空間位置關系的判斷及性質定理進行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.【點睛】本題主要考查直線與平面平行、垂直的性質與判定等基礎知識;考查空間想象能力、推理論證能力,屬于基礎題.12、D【解析】

按照復數的運算法則先求出,再寫出,進而求出.【詳解】,,.故選:D【點睛】本題考查復數的四則運算、共軛復數及復數的模,考查基本運算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據二項展開式定理,求出含的系數和含的系數,相乘即可.【詳解】的展開式中,所求項為:,的系數為.

故答案為:.【點睛】本題考查二項展開式定理的應用,屬于基礎題.14、7201【解析】

利用二項展開式的通式可求出;令中的,得兩個式子,代入可得結果.【詳解】利用二項式系數公式,,故,,故(=,故答案為:720;1.【點睛】本題考查二項展開式的通項公式的應用,考查賦值法,是基礎題.15、【解析】

設:,:,利用點到直線的距離,列出式子,求出的值即可.【詳解】解:由圓,可知圓心,半徑為.設直線:,則:,圓心到直線的距離為,,.圓心到直線的距離為半徑,即,并根據垂徑定理的應用,可列式得到,解得.故答案為:.【點睛】本題主要考查點到直線的距離公式的運用,并結合圓的方程,垂徑定理的基本知識,屬于中檔題.16、乙、丁【解析】

本題首先可根據題意中的“四個人中有且只有兩個人的猜測是正確的”將題目分為四種情況,然后對四種情況依次進行分析,觀察四人所猜測的結果是否沖突,最后即可得出結果.【詳解】從表中可知,若甲猜測正確,則乙,丙,丁猜測錯誤,與題意不符,故甲猜測錯誤;若乙猜測正確,則依題意丙猜測無法確定正誤,丁猜測錯誤;若丙猜測正確,則丁猜測錯誤;綜上只有乙,丙猜測不矛盾,依題意乙,丙猜測是正確的,從而得出乙,丁獲獎.所以本題答案為乙、丁.【點睛】本題是一個簡單的合情推理題,能否根據“四個人中有且只有兩個人的猜測是正確的”將題目所給條件分為四種情況并通過推理判斷出每一種情況的正誤是解決本題的關鍵,考查推理能力,是簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)根據遞推公式,用配湊法構造等比數列,求其通項公式,進而求出的通項公式;(2)求出數列的通項公式,利用錯位相減法求數列的前項和.【詳解】解:(1),,是首項為,公比為的等比數列.所以,.(2).【點睛】本題考查了由數列的遞推公式求通項公式,錯位相減法求數列的前n項和的問題,屬于中檔題.18、(1)見解析;(2)【解析】

(1)要證平面平面,只需證平面,而,所以只需證,而由已知的數據可證得為等邊三角形,又由于是的中點,所以,從而可證得結論;(2)由于在中,,而平面平面,所以點在平面的投影恰好為的中點,所以如圖建立空間直角坐標系,利用空間向量求解.【詳解】(1)由,所以平面四邊形為直角梯形,設,因為.所以在中,,則,又,所以,由,所以為等邊三角形,又是的中點,所以,又平面,則有平面,而平面,故平面平面.(2)解法一:在中,,取中點,所以,由(1)可知平面平面,平面平面,所以平面,以為坐標原點,方向為軸方向,建立如圖所示的空間直角坐標系,則,,設平面的法向量,由得取,則設直線與平面所成角大小為,則,故直線與平面所成角的正弦值為.解法二:在中,,取中點,所以,由(1)可知平面平面,平面平面,所以平面,過作于,連,則由平面平面,所以,又,則平面,又平面所以,在中,,所以,設到平面的距離為,由,即,即,可得,設直線與平面所成角大小為,則.故直線與平面所成角的正弦值為.【點睛】此題考查的是立體幾何中的證明面面垂直和求線面角,考查學生的轉化思想和計算能力,屬于中檔題.19、(1)所抽取的人中得分落在組和內的人數分別為人、人;(2)分布列見解析,.【解析】

(1)將分別乘以區(qū)間、對應的矩形面積可得出結果;(2)由題可知,隨機變量的可能取值為、、,利用超幾何分布概率公式計算出隨機變量在不同取值下的概率,可得出隨機變量的分布列,并由此計算出隨機變量的數學期望值.【詳解】(1)由題意知,所抽取的人中得分落在組的人數有(人),得分落在組的人數有(人).因此,所抽取的人中得分落在組的人數有人,得分落在組的人數有人;(2)由題意可知,隨機變量的所有可能取值為、、,,,,所以,隨機變量的分布列為:所以,隨機變量的期望為.【點睛】本題考查利用頻率分布直方圖計算頻數,同時也考查了離散型隨機變量分布列與數學期望的求解,考查計算能力,屬于基礎題.20、(1)(2)((3)見證明【解析】

(1)先求函數導數,再求導函數零點,列表分析導函數符號變化規(guī)律確定函數單調性,最后根據函數單調性確定最小值取法;(2)先分離不等式,轉化為對應函數最值問題,利用導數求對應函數最值即得結果;(3)構造兩個函數,再利用兩函數最值關系進行證明.【詳解】(1)當時,單調遞減,當時,單調遞增,所以函數f(x)的最小值為f()=;(2)因為所以問題等價于在上恒成立,記則,因為,令函數f(x)在(0,1)上單調遞減;函數f(x)在(1,+)上單調遞增;即,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論