2022屆貴州省銅仁市西片區(qū)高中教育聯(lián)盟高三第二次模擬考試數(shù)學(xué)試卷含解析_第1頁
2022屆貴州省銅仁市西片區(qū)高中教育聯(lián)盟高三第二次模擬考試數(shù)學(xué)試卷含解析_第2頁
2022屆貴州省銅仁市西片區(qū)高中教育聯(lián)盟高三第二次模擬考試數(shù)學(xué)試卷含解析_第3頁
2022屆貴州省銅仁市西片區(qū)高中教育聯(lián)盟高三第二次模擬考試數(shù)學(xué)試卷含解析_第4頁
2022屆貴州省銅仁市西片區(qū)高中教育聯(lián)盟高三第二次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)滿足(是虛數(shù)單位),則=()A. B. C. D.2.已知函數(shù)的最小正周期為,為了得到函數(shù)的圖象,只要將的圖象()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度3.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-14.現(xiàn)有甲、乙、丙、丁4名學(xué)生平均分成兩個(gè)志愿者小組到校外參加兩項(xiàng)活動(dòng),則乙、丙兩人恰好參加同一項(xiàng)活動(dòng)的概率為A. B. C. D.5.設(shè)全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}6.若集合,則()A. B.C. D.7.已知的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為().A. B. C. D.8.若復(fù)數(shù)滿足,復(fù)數(shù)的共軛復(fù)數(shù)是,則()A.1 B.0 C. D.9.已知的展開式中的常數(shù)項(xiàng)為8,則實(shí)數(shù)()A.2 B.-2 C.-3 D.310.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題11.如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.則下列結(jié)論中表述不正確的是()A.從2000年至2016年,該地區(qū)環(huán)境基礎(chǔ)設(shè)施投資額逐年增加;B.2011年該地區(qū)環(huán)境基礎(chǔ)設(shè)施的投資額比2000年至2004年的投資總額還多;C.2012年該地區(qū)基礎(chǔ)設(shè)施的投資額比2004年的投資額翻了兩番;D.為了預(yù)測(cè)該地區(qū)2019年的環(huán)境基礎(chǔ)設(shè)施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量t的值依次為)建立了投資額y與時(shí)間變量t的線性回歸模型,根據(jù)該模型預(yù)測(cè)該地區(qū)2019的環(huán)境基礎(chǔ)設(shè)施投資額為256.5億元.12.若兩個(gè)非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件則的最小值為__________.14.已知盒中有2個(gè)紅球,2個(gè)黃球,且每種顏色的兩個(gè)球均按,編號(hào),現(xiàn)從中摸出2個(gè)球(除顏色與編號(hào)外球沒有區(qū)別),則恰好同時(shí)包含字母,的概率為________.15.函數(shù)(為自然對(duì)數(shù)的底數(shù),),若函數(shù)恰有個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為__________________.16.三棱柱中,,側(cè)棱底面,且三棱柱的側(cè)面積為.若該三棱柱的頂點(diǎn)都在同一個(gè)球的表面上,則球的表面積的最小值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍;(2)若,求的最大值.18.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.19.(12分)將棱長(zhǎng)為的正方體截去三棱錐后得到如圖所示幾何體,為的中點(diǎn).(1)求證:平面;(2)求二面角的正弦值.20.(12分)已知數(shù)列,其前項(xiàng)和為,若對(duì)于任意,,且,都有.(1)求證:數(shù)列是等差數(shù)列(2)若數(shù)列滿足,且等差數(shù)列的公差為,存在正整數(shù),使得,求的最小值.21.(12分)在三棱柱中,四邊形是菱形,,,,,點(diǎn)M、N分別是、的中點(diǎn),且.(1)求證:平面平面;(2)求四棱錐的體積.22.(10分)圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個(gè)平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結(jié)DG,如圖2.(1)證明:圖2中的A,C,G,D四點(diǎn)共面,且平面ABC⊥平面BCGE;(2)求圖2中的二面角B?CG?A的大小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】解:由,得,.故選.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.2.A【解析】

由的最小正周期是,得,即,因此它的圖象向左平移個(gè)單位可得到的圖象.故選A.考點(diǎn):函數(shù)的圖象與性質(zhì).【名師點(diǎn)睛】三角函數(shù)圖象變換方法:3.D【解析】試題分析:因?yàn)閍n+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點(diǎn):數(shù)列的通項(xiàng)公式.4.B【解析】

求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動(dòng)的基本事件個(gè)數(shù)為,利用古典概型及其概率的計(jì)算公式,即可求解.【詳解】由題意,現(xiàn)有甲乙丙丁4名學(xué)生平均分成兩個(gè)志愿者小組到校外參加兩項(xiàng)活動(dòng),基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動(dòng)的基本事件個(gè)數(shù)為,所以乙丙兩人恰好參加同一項(xiàng)活動(dòng)的概率為,故選B.【點(diǎn)睛】本題主要考查了排列組合的應(yīng)用,以及古典概型及其概率的計(jì)算問題,其中解答中合理應(yīng)用排列、組合的知識(shí)求得基本事件的總數(shù)和所求事件所包含的基本事件的個(gè)數(shù),利用古典概型及其概率的計(jì)算公式求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.5.C【解析】

解一元二次不等式求得集合,由此求得【詳解】由,解得或.因?yàn)榛?,所?故選:C【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查集合補(bǔ)集的概念和運(yùn)算,屬于基礎(chǔ)題.6.A【解析】

先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點(diǎn)睛】本題考查求集合的交集運(yùn)算,掌握交集定義是解題關(guān)鍵.7.D【解析】因?yàn)榈恼归_式中第4項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,所以,解得,所以二項(xiàng)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為.考點(diǎn):二項(xiàng)式系數(shù),二項(xiàng)式系數(shù)和.8.C【解析】

根據(jù)復(fù)數(shù)代數(shù)形式的運(yùn)算法則求出,再根據(jù)共軛復(fù)數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的運(yùn)算法則,考查共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.9.A【解析】

先求的展開式,再分類分析中用哪一項(xiàng)與相乘,將所有結(jié)果為常數(shù)的相加,即為展開式的常數(shù)項(xiàng),從而求出的值.【詳解】展開式的通項(xiàng)為,當(dāng)取2時(shí),常數(shù)項(xiàng)為,當(dāng)取時(shí),常數(shù)項(xiàng)為由題知,則.故選:A.【點(diǎn)睛】本題考查了兩個(gè)二項(xiàng)式乘積的展開式中的系數(shù)問題,其中對(duì)所取的項(xiàng)要進(jìn)行分類討論,屬于基礎(chǔ)題.10.D【解析】選項(xiàng)A,否命題為“若,則”,故A不正確.選項(xiàng)B,逆命題為“若,則”,為假命題,故B不正確.選項(xiàng)C,由題意知對(duì),都有,故C不正確.選項(xiàng)D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.11.D【解析】

根據(jù)圖像所給的數(shù)據(jù),對(duì)四個(gè)選項(xiàng)逐一進(jìn)行分析排除,由此得到表述不正確的選項(xiàng).【詳解】對(duì)于選項(xiàng),由圖像可知,投資額逐年增加是正確的.對(duì)于選項(xiàng),投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對(duì)于選項(xiàng),令代入回歸直線方程得億元,故選項(xiàng)描述不正確.所以本題選D.【點(diǎn)睛】本小題主要考查圖表分析能力,考查利用回歸直線方程進(jìn)行預(yù)測(cè)的方法,屬于基礎(chǔ)題.12.A【解析】

設(shè)平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運(yùn)算律可求得的值,即為所求.【詳解】設(shè)平面向量與的夾角為,,可得,在等式兩邊平方得,化簡(jiǎn)得.故選:A.【點(diǎn)睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運(yùn)算性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

畫出可行域,通過平移基準(zhǔn)直線到可行域邊界位置,由此求得目標(biāo)函數(shù)的最小值.【詳解】畫出可行域如下圖所示,由圖可知:可行域是由三點(diǎn),,構(gòu)成的三角形及其內(nèi)部,當(dāng)直線過點(diǎn)時(shí),取得最小值.故答案為:【點(diǎn)睛】本小題主要考查利用線性規(guī)劃求目標(biāo)函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.14.【解析】

根據(jù)組合數(shù)得出所有情況數(shù)及兩個(gè)球顏色不相同的情況數(shù),讓兩個(gè)球顏色不相同的情況數(shù)除以總情況數(shù)即為所求的概率.【詳解】從袋中任意地同時(shí)摸出兩個(gè)球共種情況,其中有種情況是兩個(gè)球顏色不相同;故其概率是故答案為:.【點(diǎn)睛】本題主要考查了求事件概率,解題關(guān)鍵是掌握概率的基礎(chǔ)知識(shí)和組合數(shù)計(jì)算公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.15.【解析】

令,則,恰有四個(gè)解.由判斷函數(shù)增減性,求出最小值,列出相應(yīng)不等式求解得出的取值范圍.【詳解】解:令,則,恰有四個(gè)解.有兩個(gè)解,由,可得在上單調(diào)遞減,在上單調(diào)遞增,則,可得.設(shè)的負(fù)根為,由題意知,,,,則,.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)當(dāng)中的應(yīng)用,屬于難題.16.【解析】

分析題意可知,三棱柱為正三棱柱,所以三棱柱的中心即為外接球的球心,設(shè)棱柱的底面邊長(zhǎng)為,高為,則三棱柱的側(cè)面積為,球的半徑表示為,再由重要不等式即可得球表面積的最小值【詳解】如下圖,∵三棱柱為正三棱柱∴設(shè),∴三棱柱的側(cè)面積為∴又外接球半徑∴外接球表面積.故答案為:【點(diǎn)睛】考查學(xué)生對(duì)幾何體的正確認(rèn)識(shí),能通過題意了解到題目傳達(dá)的意思,培養(yǎng)學(xué)生空間想象力,能夠利用題目條件,畫出圖形,尋找外接球的球心以及半徑,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)根據(jù)單調(diào)遞減可知導(dǎo)函數(shù)恒小于等于,采用參變分離的方法分離出,并將的部分構(gòu)造成新函數(shù),分析與最值之間的關(guān)系;(2)通過對(duì)的導(dǎo)函數(shù)分析,確定有唯一零點(diǎn),則就是的極大值點(diǎn)也是最大值點(diǎn),計(jì)算的值并利用進(jìn)行化簡(jiǎn),從而確定.【詳解】(1)由題意知,在上恒成立,所以在上恒成立.令,則,所以在上單調(diào)遞增,所以,所以.(2)當(dāng)時(shí),.則,令,則,所以在上單調(diào)遞減.由于,,所以存在滿足,即.當(dāng)時(shí),,;當(dāng)時(shí),,.所以在上單調(diào)遞增,在上單調(diào)遞減.所以,因?yàn)?,所以,所以,所?【點(diǎn)睛】(1)求函數(shù)中字母的范圍時(shí),常用的方法有兩種:參變分離法、分類討論法;(2)當(dāng)導(dǎo)函數(shù)不易求零點(diǎn)時(shí),需要將導(dǎo)函數(shù)中某些部分拿出作單獨(dú)分析,以便先確定導(dǎo)函數(shù)的單調(diào)性從而確定導(dǎo)函數(shù)的零點(diǎn)所在區(qū)間,再分析整個(gè)函數(shù)的單調(diào)性,最后確定出函數(shù)的最值.18.(1)證明見解析(2)【解析】

(1)取中點(diǎn)連接,得,可得,可證,可得,進(jìn)而平面,即可證明結(jié)論;(2)設(shè)分別為邊的中點(diǎn),連,可得,,可得(或補(bǔ)角)是異面直線與所成的角,,可得,為二面角的平面角,即,設(shè),求解,即可得出結(jié)論.【詳解】(1)證明:取中點(diǎn)連接,由則,則,故,,平面,又平面,故平面平面(2)解法一:設(shè)分別為邊的中點(diǎn),則,(或補(bǔ)角)是異面直線與所成的角.設(shè)為邊的中點(diǎn),則,由知.又由(1)有平面,平面,所以為二面角的平面角,,設(shè)則在中,從而在中,,又,從而在中,因,,因此,異面直線與所成角的余弦值為.解法二:過點(diǎn)作交于點(diǎn)由(1)易知兩兩垂直,以為原點(diǎn),射線分別為軸,軸,軸的正半軸,建立空間直角坐標(biāo)系.不妨設(shè),由,易知點(diǎn)的坐標(biāo)分別為則顯然向量是平面的法向量已知二面角為,設(shè),則設(shè)平面的法向量為,則令,則由由上式整理得,解之得(舍)或,因此,異面直線與所成角的余弦值為.【點(diǎn)睛】本題考查空間點(diǎn)、線、面位置關(guān)系,證明平面與平面垂直,考查空間角,涉及到二面角、異面直線所成的角,做出空間角對(duì)應(yīng)的平面角是解題的關(guān)鍵,或用空間向量法求角,意在考查直觀想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于中檔題.19.(1)見解析;(2).【解析】

(1)取的中點(diǎn),連接、,連接,證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得二面角的余弦值,進(jìn)而可求得其正弦值.【詳解】(1)取中點(diǎn),連接、、,且,四邊形為平行四邊形,且,、分別為、中點(diǎn),且,則四邊形為平行四邊形,且,且,且,所以,四邊形為平行四邊形,且,四邊形為平行四邊形,,平面,平面,平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則、、、,,,,設(shè)平面的法向量為,由,得,取,則,,,設(shè)平面的法向量為,由,得,取,則,,,,,因此,二面角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明,同時(shí)也考查了利用空間向量法求解二面角,考查推理能力與計(jì)算能力,屬于中等題.20.(1)證明見解析;(2).【解析】

(1)用數(shù)學(xué)歸納法證明即可;(2)根據(jù)條件可得,然后將用,,表示出來,根據(jù)是一個(gè)整數(shù),可得結(jié)果.【詳解】解:(1)令,,則即∴,∴成等差數(shù)列,下面用數(shù)學(xué)歸納法證明數(shù)列是等差數(shù)列,假設(shè)成等差數(shù)列,其中,公差為,令,,∴,∴,即,∴成等差數(shù)列,∴數(shù)列是等差數(shù)列;(2),,若存在正整數(shù),使得是整數(shù),則,設(shè),,∴是一個(gè)整數(shù),∴,從而又當(dāng)時(shí),有,綜上,的最小值為.【點(diǎn)睛】本題主要考查由遞推關(guān)系得通項(xiàng)公式和等差數(shù)列的性質(zhì),關(guān)鍵是利用數(shù)學(xué)歸納法證明數(shù)列是等差數(shù)列,屬于難題.21.(1)證明見解析;(2).【解析】

(1)要證面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論