2022屆廣西柳州市名校高三下學期第一次聯(lián)考數(shù)學試卷含解析_第1頁
2022屆廣西柳州市名校高三下學期第一次聯(lián)考數(shù)學試卷含解析_第2頁
2022屆廣西柳州市名校高三下學期第一次聯(lián)考數(shù)學試卷含解析_第3頁
2022屆廣西柳州市名校高三下學期第一次聯(lián)考數(shù)學試卷含解析_第4頁
2022屆廣西柳州市名校高三下學期第一次聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知非零向量滿足,若夾角的余弦值為,且,則實數(shù)的值為()A. B. C.或 D.2.已知函數(shù),若函數(shù)有三個零點,則實數(shù)的取值范圍是()A. B. C. D.3.已知等差數(shù)列中,,,則數(shù)列的前10項和()A.100 B.210 C.380 D.4004.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位5.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.6.設、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.37.已知,,為圓上的動點,,過點作與垂直的直線交直線于點,若點的橫坐標為,則的取值范圍是()A. B. C. D.8.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數(shù)列,則的離心率為()A. B. C. D.9.已知正方體的棱長為,,,分別是棱,,的中點,給出下列四個命題:①;②直線與直線所成角為;③過,,三點的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個數(shù)為()A. B. C. D.10.設,是空間兩條不同的直線,,是空間兩個不同的平面,給出下列四個命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④11.已知函數(shù)滿足當時,,且當時,;當時,且).若函數(shù)的圖象上關于原點對稱的點恰好有3對,則的取值范圍是()A. B. C. D.12.已知,則的取值范圍是()A.[0,1] B. C.[1,2] D.[0,2]二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,直線與圓交于兩點,,若,則弦的長度的最大值為_______.14.某學習小組有名男生和名女生.若從中隨機選出名同學代表該小組參加知識競賽,則選出的名同學中恰好名男生名女生的概率為___________.15.已知函數(shù)是定義在上的奇函數(shù),其圖象關于直線對稱,當時,(其中是自然對數(shù)的底數(shù),若,則實數(shù)的值為_____.16.已知二面角α﹣l﹣β為60°,在其內部取點A,在半平面α,β內分別取點B,C.若點A到棱l的距離為1,則△ABC的周長的最小值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù).(1)若,時,在上單調遞減,求的取值范圍;(2)若,,,求證:當時,.18.(12分)某企業(yè)質量檢驗員為了檢測生產線上零件的質量情況,從生產線上隨機抽取了個零件進行測量,根據(jù)所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:(1)根據(jù)頻率分布直方圖,求這個零件尺寸的中位數(shù)(結果精確到);(2)若從這個零件中尺寸位于之外的零件中隨機抽取個,設表示尺寸在上的零件個數(shù),求的分布列及數(shù)學期望;(3)已知尺寸在上的零件為一等品,否則為二等品,將這個零件尺寸的樣本頻率視為概率.現(xiàn)對生產線上生產的零件進行成箱包裝出售,每箱個.企業(yè)在交付買家之前需要決策是否對每箱的所有零件進行檢驗,已知每個零件的檢驗費用為元.若檢驗,則將檢驗出的二等品更換為一等品;若不檢驗,如果有二等品進入買家手中,企業(yè)要向買家對每個二等品支付元的賠償費用.現(xiàn)對一箱零件隨機抽檢了個,結果有個二等品,以整箱檢驗費用與賠償費用之和的期望值作為決策依據(jù),該企業(yè)是否對該箱余下的所有零件進行檢驗?請說明理由.19.(12分)如圖,在中,,的角平分線與交于點,.(Ⅰ)求;(Ⅱ)求的面積.20.(12分)設,,,.(1)若的最小值為4,求的值;(2)若,證明:或.21.(12分)山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學、外語,自主選擇的3門普通高中學業(yè)水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個等級。參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法則,分別轉換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分數(shù)區(qū)間,得到考生的等級成績.舉例說明.某同學化學學科原始分為65分,該學科C+等級的原始分分布區(qū)間為58~69,則該同學化學學科的原始成績屬C+等級.而C+等級的轉換分區(qū)間為61~70,那么該同學化學學科的轉換分為:設該同學化學科的轉換等級分為x,69-6565-58=70-x四舍五入后該同學化學學科賦分成績?yōu)?7.(1)某校高一年級共2000人,為給高一學生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布ξ~N(60,12(i)若小明同學在這次考試中物理原始分為84分,等級為B+,其所在原始分分布區(qū)間為82~93,求小明轉換后的物理成績;(ii)求物理原始分在區(qū)間(72,84)的人數(shù);(2)按高考改革方案,若從全省考生中隨機抽取4人,記X表示這4人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學期望.(附:若隨機變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.68222.(10分)已知函數(shù).(1)若,求的取值范圍;(2)若,對,不等式恒成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

根據(jù)向量垂直則數(shù)量積為零,結合以及夾角的余弦值,即可求得參數(shù)值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數(shù)量積的應用,涉及由向量垂直求參數(shù)值,屬基礎題.2.B【解析】

根據(jù)所給函數(shù)解析式,畫出函數(shù)圖像.結合圖像,分段討論函數(shù)的零點情況:易知為的一個零點;對于當時,由代入解析式解方程可求得零點,結合即可求得的范圍;對于當時,結合導函數(shù),結合導數(shù)的幾何意義即可判斷的范圍.綜合后可得的范圍.【詳解】根據(jù)題意,畫出函數(shù)圖像如下圖所示:函數(shù)的零點,即.由圖像可知,,所以是的一個零點,當時,,若,則,即,所以,解得;當時,,則,且若在時有一個零點,則,綜上可得,故選:B.【點睛】本題考查了函數(shù)圖像的畫法,函數(shù)零點定義及應用,根據(jù)零點個數(shù)求參數(shù)的取值范圍,導數(shù)的幾何意義應用,屬于中檔題.3.B【解析】

設公差為,由已知可得,進而求出的通項公式,即可求解.【詳解】設公差為,,,,.故選:B.【點睛】本題考查等差數(shù)列的基本量計算以及前項和,屬于基礎題.4.D【解析】

直接根據(jù)三角函數(shù)的圖象平移規(guī)則得出正確的結論即可;【詳解】解:函數(shù),要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個單位.故選:D.【點睛】本題考查三角函數(shù)圖象平移的應用問題,屬于基礎題.5.A【解析】

求導得到,根據(jù)切線方程得到,故,設,求導得到函數(shù)在上單調遞減,在上單調遞增,故,計算得到答案.【詳解】,則,取,,故,.故,故,.設,,取,解得.故函數(shù)在上單調遞減,在上單調遞增,故.故選:.【點睛】本題考查函數(shù)的切線問題,利用導數(shù)求最值,意在考查學生的計算能力和綜合應用能力.6.C【解析】

先根據(jù)奇偶性,求出的解析式,令,即可求出?!驹斀狻恳驗?、分別是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C。【點睛】本題主要考查函數(shù)性質奇偶性的應用。7.A【解析】

由題意得,即可得點M的軌跡為以A,B為左、右焦點,的雙曲線,根據(jù)雙曲線的性質即可得解.【詳解】如圖,連接OP,AM,由題意得,點M的軌跡為以A,B為左、右焦點,的雙曲線,.故選:A.【點睛】本題考查了雙曲線定義的應用,考查了轉化化歸思想,屬于中檔題.8.C【解析】

根據(jù)等差數(shù)列的性質設出,,,利用勾股定理列方程,結合橢圓的定義,求得.再利用勾股定理建立的關系式,化簡后求得離心率.【詳解】由已知,,成等差數(shù)列,設,,.由于,據(jù)勾股定理有,即,化簡得;由橢圓定義知的周長為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【點睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質,屬于中檔題.9.C【解析】

畫出幾何體的圖形,然后轉化判斷四個命題的真假即可.【詳解】如圖;連接相關點的線段,為的中點,連接,因為是中點,可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點,所以,而,.所以三棱錐的體積為,④正確;故選:.【點睛】本題考查命題的真假的判斷與應用,涉及空間幾何體的體積,直線與平面的位置關系的應用,平面的基本性質,是中檔題.10.C【解析】

根據(jù)線面平行或垂直的有關定理逐一判斷即可.【詳解】解:①:、也可能相交或異面,故①錯②:因為,,所以或,因為,所以,故②對③:或,故③錯④:如圖因為,,在內過點作直線的垂線,則直線,又因為,設經過和相交的平面與交于直線,則又,所以因為,,所以,所以,故④對.故選:C【點睛】考查線面平行或垂直的判斷,基礎題.11.C【解析】

先作出函數(shù)在上的部分圖象,再作出關于原點對稱的圖象,分類利用圖像列出有3個交點時滿足的條件,解之即可.【詳解】先作出函數(shù)在上的部分圖象,再作出關于原點對稱的圖象,如圖所示,當時,對稱后的圖象不可能與在的圖象有3個交點;當時,要使函數(shù)關于原點對稱后的圖象與所作的圖象有3個交點,則,解得.故選:C.【點睛】本題考查利用函數(shù)圖象解決函數(shù)的交點個數(shù)問題,考查學生數(shù)形結合的思想、轉化與化歸的思想,是一道中檔題.12.D【解析】

設,可得,構造()22,結合,可得,根據(jù)向量減法的模長不等式可得解.【詳解】設,則,,∴()2?2||22=4,所以可得:,配方可得,所以,又則[0,2].故選:D.【點睛】本題考查了向量的運算綜合,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設為的中點,根據(jù)弦長公式,只需最小,在中,根據(jù)余弦定理將表示出來,由,得到,結合弦長公式得到,求出點的軌跡方程,即可求解.【詳解】設為的中點,在中,,①在中,,②①②得,即,,.,得.所以,.故答案為:.【點睛】本題考查直線與圓的位置關系、相交弦長的最值,解題的關鍵求出點的軌跡方程,考查計算求解能力,屬于中檔題.14.【解析】

從7人中選出2人則總數(shù)有,符合條件數(shù)有,后者除以前者即得結果【詳解】從7人中隨機選出2人的總數(shù)有,則記選出的名同學中恰好名男生名女生的概率為事件,∴故答案為:【點睛】組合數(shù)與概率的基本運用,熟悉組合數(shù)公式15.【解析】

先推導出函數(shù)的周期為,可得出,代值計算,即可求出實數(shù)的值.【詳解】由于函數(shù)是定義在上的奇函數(shù),則,又該函數(shù)的圖象關于直線對稱,則,所以,,則,所以,函數(shù)是周期為的周期函數(shù),所以,解得.故答案為:.【點睛】本題考查利用函數(shù)的對稱性計算函數(shù)值,解題的關鍵就是結合函數(shù)的奇偶性與對稱軸推導出函數(shù)的周期,考查推理能力與計算能力,屬于中等題.16.【解析】

作A關于平面α和β的對稱點M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對稱性三角形ADC的周長為AB+AC+BC=MB+BC+CN,當四點共線時長度最短,結合對稱性和余弦定理求解.【詳解】作A關于平面α和β的對稱點M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對稱性三角形ABC的周長為AB+AC+BC=MB+BC+CN,當M,B,C,N共線時,周長最小為MN設平面ADE交l于,O,連接OD,OE,顯然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根據(jù)余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案為:.【點睛】此題考查求空間三角形邊長的最值,關鍵在于根據(jù)幾何性質找出對稱關系,結合解三角形知識求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)見解析【解析】

(1)在上單調遞減等價于在恒成立,分離參數(shù)即可解決.(2)先對求導,化簡后根據(jù)零點存在性定理判斷唯一零點所在區(qū)間,構造函數(shù)利用基本不等式求解即可.【詳解】(1),時,,,∵在上單調遞減.∴,.令,,時,;時,,∴在上為減函數(shù),在上為增函數(shù).∴,∴.∴的取值范圍為.(2)若,,時,,,令,顯然在上為增函數(shù).又,,∴有唯一零點.且,時,,;時,,,∴在上為增函數(shù),在上為減函數(shù).∴.又,∴,,.∴.,.∴當時,.【點睛】此題考查函數(shù)定區(qū)間上單調,和零點存在性定理等知識點,難點為找到最值后的構造函數(shù)求值域,屬于較難題目.18.(1);(2)分布列見詳解,期望為;(3)余下所有零件不用檢驗,理由見詳解.【解析】

(1)計算的頻率,并且與進行比較,判斷中位數(shù)落在的區(qū)間,然后根據(jù)頻率的計算方法,可得結果.(2)計算位于之外的零件中隨機抽取個的總數(shù),寫出所有可能取值,并計算相對應的概率,列出分布列,計算期望,可得結果.(3)計算整箱的費用,根據(jù)余下零件個數(shù)服從二項分布,可得余下零件個數(shù)的期望值,然后計算整箱檢驗費用與賠償費用之和的期望值,進行比較,可得結果.【詳解】(1)尺寸在的頻率:尺寸在的頻率:且所以可知尺寸的中位數(shù)落在假設尺寸中位數(shù)為所以所以這個零件尺寸的中位數(shù)(2)尺寸在的個數(shù)為尺寸在的個數(shù)為的所有可能取值為1,2,3,4則,,所以的分布列為(3)二等品的概率為如果對余下的零件進行檢驗則整箱的檢驗費用為(元)余下二等品的個數(shù)期望值為如果不對余下的零件進行檢驗,整箱檢驗費用與賠償費用之和的期望值為(元)所以,所以可以不對余下的零件進行檢驗.【點睛】本題考查頻率分布直方圖的應用,掌握中位數(shù),平均數(shù),眾數(shù)的計算方法,中位數(shù)的理解應該從中位數(shù)開始左右兩邊的頻率各為0.5,考驗分析能力以及數(shù)據(jù)處理,屬中檔題.19.(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,進而得,在中,由正弦定理得,所以的面積即可得解.試題解析:(Ⅰ)在中,由余弦定理得,所以,由正弦定理得,所以.(Ⅱ)由(Ⅰ)可知.在中,.在中,由正弦定理得,所以.所以的面積.20.(1)2;(2)見解析【解析】

(1)將化簡為,再利用基本不等式即可求出最小值為4,便可得出的值;(2)根據(jù),即,得出,利用基本不等式求出最值,便可得出的取值范圍.【詳解】解:(1)由題可知,,,,,∴.(2)∵,∴,∴,∴,即:或.【點睛】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論