




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第20講三角函數(shù)的圖像與性質(zhì)(精講)題型目錄一覽①正弦函數(shù)的圖像與性質(zhì)②余弦函數(shù)的圖像與性質(zhì)③正切函數(shù)的圖像與性質(zhì)一、知識點梳理一、知識點梳理一、用五點法作正弦函數(shù)和余弦函數(shù)的簡圖(下表中SKIPIF1<0)(1)在正弦函數(shù)SKIPIF1<0,SKIPIF1<0的圖象中,五個關(guān)鍵點是:SKIPIF1<0.(2)在余弦函數(shù)SKIPIF1<0,SKIPIF1<0的圖象中,五個關(guān)鍵點是:SKIPIF1<0.函數(shù)SKIPIF1<0SKIPIF1<0SKIPIF1<0圖象定義域SKIPIF1<0SKIPIF1<0SKIPIF1<0值域SKIPIF1<0SKIPIF1<0SKIPIF1<0周期性SKIPIF1<0SKIPIF1<0SKIPIF1<0奇偶性奇函數(shù)偶函數(shù)奇函數(shù)遞增區(qū)間SKIPIF1<0SKIPIF1<0SKIPIF1<0遞減區(qū)間SKIPIF1<0SKIPIF1<0無對稱中心SKIPIF1<0SKIPIF1<0SKIPIF1<0對稱軸方程SKIPIF1<0SKIPIF1<0無二、正弦、余弦、正切函數(shù)的圖象與性質(zhì)1.對稱與周期(1)正(余)弦曲線相鄰兩條對稱軸之間的距離是SKIPIF1<0;(2)正(余)弦曲線相鄰兩個對稱中心的距離是SKIPIF1<0;(3)正(余)弦曲線相鄰兩條對稱軸與對稱中心距離SKIPIF1<0;2.函數(shù)具有奇、偶性的充要條件(1)函數(shù)y=Asin(ωx+φ)(x∈R)是奇函數(shù)?φ=kπ(k∈Z);(2)函數(shù)y=Asin(ωx+φ)(x∈R)是偶函數(shù)?φ=kπ+eq\f(π,2)(k∈Z);(3)函數(shù)y=Acos(ωx+φ)(x∈R)是奇函數(shù)?φ=kπ+eq\f(π,2)(k∈Z);(4)函數(shù)y=Acos(ωx+φ)(x∈R)是偶函數(shù)?φ=kπ(k∈Z).二、題型分類精講二、題型分類精講題型一正弦函數(shù)的圖像與性質(zhì)【典例1】方程SKIPIF1<0的根中,在SKIPIF1<0內(nèi)的有(
)A.1個 B.2個C.3個 D.4個【答案】A【分析】方程SKIPIF1<0的解等價于兩個函數(shù)SKIPIF1<0與SKIPIF1<0圖像交點的橫坐標(biāo),所以分別畫出兩函數(shù)圖像,由圖即可得出結(jié)論.【詳解】如圖所示,在區(qū)間SKIPIF1<0內(nèi)|SKIPIF1<0的兩個根為SKIPIF1<0和SKIPIF1<0,又因為SKIPIF1<0,所以在區(qū)間SKIPIF1<0內(nèi)|SKIPIF1<0只有一個根SKIPIF1<0.故選:A.【典例2】函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的零點個數(shù)為(
)A.2 B.3 C.4 D.5【答案】B【分析】利用二倍角余弦公式得SKIPIF1<0,令其為0,解出SKIPIF1<0值,再根據(jù)SKIPIF1<0的范圍,即可得到零點.【詳解】令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,則函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的零點個數(shù)為3個.故選:B.【題型訓(xùn)練】一、單選題1.函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0的交點的個數(shù)是(
)A.1 B.2 C.3 D.4【答案】D【分析】畫出SKIPIF1<0以及SKIPIF1<0的圖象,由此確定正確答案.【詳解】在同一平面直角坐標(biāo)系中畫出函數(shù)SKIPIF1<0和直線SKIPIF1<0的圖象(如圖所示),可得兩圖象的交點共有4個.故選:D2.“SKIPIF1<0”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.既是充分條件,也是必要條件 D.既不充分也不必要條件【答案】A【解析】先判斷充分性,再判斷非必要性,即得解.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,所以“SKIPIF1<0”是“SKIPIF1<0”的充分條件;當(dāng)SKIPIF1<0時,SKIPIF1<0不一定成立,如SKIPIF1<0,但是SKIPIF1<0,所以“SKIPIF1<0”是“SKIPIF1<0”的不必要條件.故選:A【點睛】方法點睛:充分條件必要條件的判定,常用的方法有:(1)定義法;(2)集合法;(3)轉(zhuǎn)化法.要根據(jù)已知條件靈活選擇方法求解.3.函數(shù)SKIPIF1<0最大值為(
)A.2 B.5 C.8 D.7【答案】A【分析】根據(jù)正弦函數(shù)的圖象與性質(zhì)直接求解.【詳解】SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0最大值為2.故選:A.4.函數(shù)SKIPIF1<0的零點是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】令SKIPIF1<0,再根據(jù)正弦函數(shù)的性質(zhì)即可得解.【詳解】令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0的零點是SKIPIF1<0.故選:B.5.設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.在區(qū)間SKIPIF1<0上是單調(diào)遞減的 B.是周期為SKIPIF1<0的周期函數(shù)C.在區(qū)間SKIPIF1<0上是單調(diào)遞增的 D.對稱中心為SKIPIF1<0,SKIPIF1<0【答案】A【分析】先當(dāng)SKIPIF1<0時,SKIPIF1<0,又SKIPIF1<0是偶函數(shù),由此可判斷命題的真假.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,在SKIPIF1<0上是單調(diào)遞減的,故A正確;SKIPIF1<0是偶函數(shù),無周期性,故B錯誤;SKIPIF1<0是偶函數(shù),在SKIPIF1<0單調(diào)遞減,故C錯誤;SKIPIF1<0是偶函數(shù),無對稱中心,故D錯誤;故選:A二、多選題6.函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0的交點個數(shù)可能是(
)A.0 B.1 C.2 D.3【答案】ABCD【分析】根據(jù)SKIPIF1<0和SKIPIF1<0對應(yīng)的SKIPIF1<0的范圍,去掉絕對值化簡函數(shù)解析式,再由解析式畫出函數(shù)的圖象,對SKIPIF1<0分類討論即可判斷.【詳解】解:由題意知,SKIPIF1<0,SKIPIF1<0,在坐標(biāo)系中畫出函數(shù)SKIPIF1<0的圖象如圖所示:由其圖象知,當(dāng)直線SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0的圖象,與直線SKIPIF1<0有且僅有兩個不同的交點.當(dāng)直線SKIPIF1<0,SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0的圖象,與直線SKIPIF1<0有且僅有三個不同的交點.當(dāng)直線SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0的圖象,與直線SKIPIF1<0有且僅有一個不同的交點.當(dāng)直線SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0的圖象,與直線SKIPIF1<0無交點.故選:ABCD.三、填空題7.觀察正弦函數(shù)的圖像,可得不等SKIPIF1<0的解集為______.【答案】SKIPIF1<0【分析】畫出SKIPIF1<0的圖像,根據(jù)圖像確定正確答案.【詳解】畫出SKIPIF1<0的圖像如下圖所示,由圖可知,不等SKIPIF1<0的解集為SKIPIF1<0.故答案為:SKIPIF1<08.函數(shù)SKIPIF1<0,SKIPIF1<0的值域是______.【答案】SKIPIF1<0【分析】利用整體代換和正弦函數(shù)的性質(zhì)即可求解.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0的值域為SKIPIF1<0.故答案為:SKIPIF1<0.9.如果方程SKIPIF1<0在SKIPIF1<0上有兩個不同的解,則實數(shù)a的取值范圍是______.【答案】SKIPIF1<0【分析】結(jié)合三角函數(shù)圖像判斷即可;【詳解】
結(jié)合三角函數(shù)圖像可知,當(dāng)SKIPIF1<0時,直線SKIPIF1<0有兩個交點,故答案為:SKIPIF1<0題型二余弦函數(shù)的圖像與性質(zhì)【典例1】函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0(SKIPIF1<0為常數(shù))的交點最多有(
)A.SKIPIF1<0個 B.SKIPIF1<0個 C.SKIPIF1<0個 D.SKIPIF1<0個【答案】D【分析】作出函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象,可得出結(jié)論.【詳解】作出函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象,如下圖所示:由圖可知,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0(SKIPIF1<0為常數(shù))的交點最多有SKIPIF1<0個.故選:D.【典例2】不等式SKIPIF1<0在SKIPIF1<0上的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】結(jié)合余弦函數(shù)圖象分析運算,即可得結(jié)果.【詳解】∵SKIPIF1<0,則SKIPIF1<0,注意到SKIPIF1<0,結(jié)合余弦函數(shù)圖象解得SKIPIF1<0.故選:D.【題型訓(xùn)練】一、單選題1.函數(shù)y=|cosx|的一個單調(diào)增區(qū)間是()A.SKIPIF1<0 B.[0,π]C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】首先畫出SKIPIF1<0的圖像,根據(jù)圖像判斷各選項,從而得到答案.【詳解】將y=SKIPIF1<0的圖像位于x軸下方的圖像關(guān)于x軸對稱翻折到x軸上方,x軸上方(或x軸上)的圖像不變,即得y=|cosx|的圖像根據(jù)各選項判斷只有D選項正確.故選:D.【點睛】本題考查通過函數(shù)圖像判斷函數(shù)單調(diào)性的知識點,屬于基礎(chǔ)題型.2.函數(shù)SKIPIF1<0的定義域為A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由SKIPIF1<0,結(jié)合余弦函數(shù)的圖象,即可求解.【詳解】函數(shù)SKIPIF1<0有意義,須SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)的定義域為SKIPIF1<0.故選:C.【點睛】本題考查函數(shù)的定義域,熟練掌握三角函數(shù)的圖象是解題的關(guān)鍵,屬于基礎(chǔ)題.3.已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,值域為SKIPIF1<0,則SKIPIF1<0的值是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)三角函數(shù)的定義域,求出值域,也即求得SKIPIF1<0的值,進(jìn)而求得SKIPIF1<0的值.【詳解】由于SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,故選B.【點睛】本小題主要考查三角函數(shù)的值域,屬于基礎(chǔ)題.對于定義域范圍不同的三角函數(shù),其值域可借助圖像來求解出來.4.函數(shù)SKIPIF1<0的最大值是(
)A.SKIPIF1<0 B.5 C.6 D.1【答案】B【分析】先由余弦的二倍角公式對函數(shù)化簡,統(tǒng)一成余弦,然后配方利用余弦函數(shù)的有界性可求得其最大值.【詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0.故選:B.【點睛】此題考查了余弦的二倍角公式,配方法,屬于基礎(chǔ)題.5.若函數(shù)SKIPIF1<0的大致圖像是A. B.C. D.【答案】D【分析】先去絕對值,化為分段函數(shù),再根據(jù)余弦函數(shù)的單調(diào)性,得出答案.【詳解】SKIPIF1<0,SKIPIF1<0在SKIPIF1<0,SKIPIF1<0為減函數(shù),在SKIPIF1<0,SKIPIF1<0為增函數(shù),并且函數(shù)值都大于等于0,只有SKIPIF1<0符合,故答案為SKIPIF1<0【點睛】本題主要考查了分段函數(shù)的圖象,以及余弦函數(shù)的圖象,關(guān)鍵是化為分段函數(shù),去絕對值,屬于基礎(chǔ)題.6.在SKIPIF1<0內(nèi),使SKIPIF1<0成立的SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0SKIPIF1<0SKIPIF1<0 D.SKIPIF1<0SKIPIF1<0SKIPIF1<0【答案】A【分析】畫出SKIPIF1<0在SKIPIF1<0內(nèi)的圖像,根據(jù)圖像求出使SKIPIF1<0成立的SKIPIF1<0的取值范圍.【詳解】畫出SKIPIF1<0在SKIPIF1<0內(nèi)的圖像如下圖所示,由圖可知,使SKIPIF1<0成立的SKIPIF1<0的取值范圍是SKIPIF1<0,故選A.【點睛】本小題主要考查SKIPIF1<0和SKIPIF1<0的圖像與性質(zhì),考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.二、多選題7.下列不等式中成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【分析】根據(jù)正弦SKIPIF1<0在SKIPIF1<0單調(diào)遞增可判斷A,根據(jù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減可判斷B,根據(jù)誘導(dǎo)公式以及正余弦的單調(diào)性可判斷C,D.【詳解】對A,因為SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,故A正確;對B,因為SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,故B錯誤;對于C,SKIPIF1<0,故C正確;對于D,SKIPIF1<0,故D錯誤;故選:AC三、填空題8.若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的取值范圍是_____.【答案】SKIPIF1<0【分析】由余弦函數(shù)的值域有SKIPIF1<0,即可求m的范圍.【詳解】由余弦函數(shù)的性質(zhì)知:SKIPIF1<0,可得SKIPIF1<0.故答案為:SKIPIF1<09.方程SKIPIF1<0的解集為___________.【答案】SKIPIF1<0【分析】本題可根據(jù)余弦函數(shù)性質(zhì)得出結(jié)果.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0故方程SKIPIF1<0的解集為SKIPIF1<0,故答案為:SKIPIF1<0.10.在SKIPIF1<0內(nèi)不等式SKIPIF1<0的解集為__________.【答案】SKIPIF1<0【分析】利用余弦函數(shù)的性質(zhì)即可得到結(jié)果.【詳解】∵SKIPIF1<0,∴SKIPIF1<0,根據(jù)余弦曲線可得,∴SKIPIF1<0.故答案為:SKIPIF1<0題型三正切函數(shù)的圖像與性質(zhì)【典例1】設(shè)直線l的斜率為k,且SKIPIF1<0,直線l的傾斜角SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)傾斜角與斜率的關(guān)系得到SKIPIF1<0,結(jié)合正切函數(shù)的圖象及SKIPIF1<0,數(shù)形結(jié)合得到直線l的傾斜角SKIPIF1<0的取值范圍.【詳解】由題意得:SKIPIF1<0,因為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,畫出SKIPIF1<0的圖象如下:所以SKIPIF1<0故選:D【典例2】函數(shù)SKIPIF1<0的定義域為(
).A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】C【分析】利用正切函數(shù)圖像可以得到結(jié)果.【詳解】由題意可得:SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.故選:C.【題型訓(xùn)練】一、單選題1.方程SKIPIF1<0的解集是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】把方程化為SKIPIF1<0,結(jié)合正切函數(shù)的性質(zhì),即可求解方程的解,得到答案.【詳解】由題意,方程SKIPIF1<0,可化為SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,即方程的解集為SKIPIF1<0.故選:C.2.“SKIPIF1<0”是“SKIPIF1<0”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】D【分析】根據(jù)充要條件的定義進(jìn)行判斷即可.【詳解】充分性:當(dāng)SKIPIF1<0時,SKIPIF1<0符合“SKIPIF1<0”,但是SKIPIF1<0不存在,即“SKIPIF1<0”不能推出“SKIPIF1<0”,故充分性不滿足;必要性:當(dāng)SKIPIF1<0時,SKIPIF1<0符合SKIPIF1<0,此時SKIPIF1<0不滿足“SKIPIF1<0”,即“SKIPIF1<0”不能推出“SKIPIF1<0”,故充分性不滿足;所以“SKIPIF1<0”是“SKIPIF1<0”的既不充分也不必要條件.故選:D.3.在(0,SKIPIF1<0)內(nèi),使SKIPIF1<0成立的SKIPIF1<0的取值范圍為(
)A.(SKIPIF1<0,SKIPIF1<0) B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】畫出SKIPIF1<0和直線SKIPIF1<0的圖象,由圖象可得不等式的解集.【詳解】畫出SKIPIF1<0和直線SKIPIF1<0的圖象,由圖象可得SKIPIF1<0,在SKIPIF1<0上解集為SKIPIF1<0,故選B.【點睛】本題考查利用正切函數(shù)的圖象解不等式,關(guān)鍵是掌握正切函數(shù)的圖像和性質(zhì),利用數(shù)形結(jié)合思想求解.4.SKIPIF1<0是SKIPIF1<0的(
)A.充分非必要條件 B.必要非充分條件C.既非充分也非必要條件 D.充要條件【答案】C【分析】利用特值法,結(jié)合充分必要條件的定義即可【詳解】由于SKIPIF1<0滿足SKIPIF1<0,但推不出SKIPIF1<0,故必要性不滿足;由于SKIPIF1<0滿足SKIPIF1<0,但正切值不存在,所以充分性不滿足;所以SKIPIF1<0是SKIPIF1<0的既非充分也非必要條件故選:C5.若直線SKIPIF1<0(SKIPIF1<0)與函數(shù)SKIPIF1<0的圖象無公共點,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)題意可得SKIPIF1<0,得SKIPIF1<0,從而轉(zhuǎn)化為解不等式SKIPIF1<0,利用正切函數(shù)的性質(zhì)求解即可.【詳解】因為直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象無公共點,且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0可化為SKIPIF1<0,所以解得SKIPIF1<0所以不等式SKIPIF1<0的解集為SKIPIF1<0,故選:B.6.對于四個函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,下列說法錯誤的是(
)A.SKIPIF1<0不是奇函數(shù),最小正周期是SKIPIF1<0,沒有對稱中心B.SKIPIF1<0是偶函數(shù),最小正周期是SKIPIF1<0,有無數(shù)多條對稱軸C.SKIPIF1<0不是奇函數(shù),沒有周期,只有一條對稱軸D.SKIPIF1<0是偶函數(shù),最小正周期是SKIPIF1<0,沒有對稱中心【答案】D【分析】利用圖象逐項判斷,可得出合適的選項.【詳解】對于A選項,如下圖所示:由圖可知,函數(shù)SKIPIF1<0不是奇函數(shù),最小正周期是SKIPIF1<0,沒有對稱中心,A對;對于B選項,如下圖所示:由圖可知,SKIPIF1<0是偶函數(shù),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 左側(cè)腹股溝斜疝護(hù)理查房
- 手術(shù)室護(hù)理工作:守護(hù)生命的堅實后盾
- 大班禮貌課程公開課
- 孔子的故事課件
- 閩教版英語四年級上期評估計劃
- 三年級數(shù)學(xué)學(xué)習(xí)習(xí)慣培養(yǎng)計劃
- 普通話在職場溝通培訓(xùn)計劃
- 小學(xué)二年級課外活動培優(yōu)輔差工作計劃
- 人教版小學(xué)五年級音樂教育計劃
- 小學(xué)美術(shù)湘美版五年級跨學(xué)科融合計劃
- 第二單元“中華傳統(tǒng)文化經(jīng)典研習(xí)”說課稿 2024-2025學(xué)年統(tǒng)編版高中語文選擇性必修上冊001
- 2024年德州市人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 訂單與合同管理制度
- 【MOOC期末】《英美文學(xué)里的生態(tài)》(北京林業(yè)大學(xué))期末中國大學(xué)慕課MOOC答案
- 外科患者疼痛護(hù)理與管理
- 《家校社協(xié)同育人“教聯(lián)體”工作方案》專題培訓(xùn)
- 2024年六西格瑪黃帶認(rèn)證考試練習(xí)題庫(含答案)
- 兒童牙齒分齡護(hù)理方案
- 2023-2024學(xué)年廣東省深圳市寶安區(qū)七年級(下)期中英語試卷
- DB43T 2558-2023 城鎮(zhèn)低效用地識別技術(shù)指南
- 中國心力衰竭診斷和治療指南2024解讀(完整版)
評論
0/150
提交評論