新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第10講 指數(shù)與指數(shù)函數(shù)(含解析)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第10講 指數(shù)與指數(shù)函數(shù)(含解析)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第10講 指數(shù)與指數(shù)函數(shù)(含解析)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第10講 指數(shù)與指數(shù)函數(shù)(含解析)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第10講 指數(shù)與指數(shù)函數(shù)(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩31頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第10講指數(shù)與指數(shù)函數(shù)(精講)題型目錄一覽①指數(shù)冪的化簡(jiǎn)與求值②指數(shù)函數(shù)的圖像與性質(zhì)③解指數(shù)方程與不等式④指數(shù)函數(shù)的綜合應(yīng)用★【文末附錄-指數(shù)運(yùn)算和指數(shù)函數(shù)思維導(dǎo)圖】一、知識(shí)點(diǎn)梳理一、知識(shí)點(diǎn)梳理1.指數(shù)及指數(shù)運(yùn)算(1)根式的定義:一般地,如果SKIPIF1<0,那么SKIPIF1<0叫做SKIPIF1<0的SKIPIF1<0次方根,其中SKIPIF1<0,SKIPIF1<0,記為SKIPIF1<0,SKIPIF1<0稱為根指數(shù),SKIPIF1<0稱為根底數(shù).(2)根式的性質(zhì):當(dāng)SKIPIF1<0為奇數(shù)時(shí),正數(shù)的SKIPIF1<0次方根是一個(gè)正數(shù),負(fù)數(shù)的SKIPIF1<0次方根是一個(gè)負(fù)數(shù).當(dāng)SKIPIF1<0為偶數(shù)時(shí),正數(shù)的SKIPIF1<0次方根有兩個(gè),它們互為相反數(shù).(3)指數(shù)的概念:指數(shù)是冪運(yùn)算SKIPIF1<0中的一個(gè)參數(shù),SKIPIF1<0為底數(shù),SKIPIF1<0為指數(shù),指數(shù)位于底數(shù)的右上角,冪運(yùn)算表示指數(shù)個(gè)底數(shù)相乘.(4)有理數(shù)指數(shù)冪的分類①正整數(shù)指數(shù)冪SKIPIF1<0;②零指數(shù)冪SKIPIF1<0;③負(fù)整數(shù)指數(shù)冪SKIPIF1<0,SKIPIF1<0;④SKIPIF1<0的正分?jǐn)?shù)指數(shù)冪等于SKIPIF1<0,SKIPIF1<0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義.(5)有理數(shù)指數(shù)冪的性質(zhì)①SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;②SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;③SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;④SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.2.指數(shù)函數(shù)SKIPIF1<0SKIPIF1<0SKIPIF1<0圖象性質(zhì)①定義域SKIPIF1<0,值域SKIPIF1<0②SKIPIF1<0,即時(shí)SKIPIF1<0,SKIPIF1<0,圖象都經(jīng)過(guò)SKIPIF1<0點(diǎn)③SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0等于底數(shù)SKIPIF1<0④在定義域上是單調(diào)減函數(shù)在定義域上是單調(diào)增函數(shù)⑤SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0⑥既不是奇函數(shù),也不是偶函數(shù)【常用結(jié)論】1.指數(shù)函數(shù)常用技巧(1)當(dāng)?shù)讛?shù)大小不定時(shí),必須分“SKIPIF1<0”和“SKIPIF1<0”兩種情形討論.(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0;SKIPIF1<0的值越小,圖象越靠近SKIPIF1<0軸,遞減的速度越快.當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0;SKIPIF1<0的值越大,圖象越靠近SKIPIF1<0軸,遞增速度越快.(3)指數(shù)函數(shù)SKIPIF1<0與SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對(duì)稱.二、題型分類精講二、題型分類精講刷真題明導(dǎo)向刷真題明導(dǎo)向一、單選題1.(2022·北京·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0,則對(duì)任意實(shí)數(shù)x,有(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】直接代入計(jì)算,注意通分不要計(jì)算錯(cuò)誤.【詳解】SKIPIF1<0,故A錯(cuò)誤,C正確;SKIPIF1<0,不是常數(shù),故BD錯(cuò)誤;故選:C.2.(2020·全國(guó)·統(tǒng)考高考真題)設(shè)SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)已知等式,利用指數(shù)對(duì)數(shù)運(yùn)算性質(zhì)即可得解【詳解】由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,所以有SKIPIF1<0,故選:B.【點(diǎn)睛】本題考查的是有關(guān)指對(duì)式的運(yùn)算的問(wèn)題,涉及到的知識(shí)點(diǎn)有對(duì)數(shù)的運(yùn)算法則,指數(shù)的運(yùn)算法則,屬于基礎(chǔ)題目.3.(2020·山東·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0是偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則該函數(shù)在SKIPIF1<0上的圖像大致是(

)A. B.C. D.【答案】B【分析】根據(jù)偶函數(shù),指數(shù)函數(shù)的知識(shí)確定正確選項(xiàng).【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0是偶函數(shù),所以SKIPIF1<0在SKIPIF1<0上遞增.注意到SKIPIF1<0,所以B選項(xiàng)符合.故選:B4.(2021·全國(guó)·統(tǒng)考高考真題)下列函數(shù)中最小值為4的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)二次函數(shù)的性質(zhì)可判斷SKIPIF1<0選項(xiàng)不符合題意,再根據(jù)基本不等式“一正二定三相等”,即可得出SKIPIF1<0不符合題意,SKIPIF1<0符合題意.【詳解】對(duì)于A,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),所以其最小值為SKIPIF1<0,A不符合題意;對(duì)于B,因?yàn)镾KIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),等號(hào)取不到,所以其最小值不為SKIPIF1<0,B不符合題意;對(duì)于C,因?yàn)楹瘮?shù)定義域?yàn)镾KIPIF1<0,而SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),所以其最小值為SKIPIF1<0,C符合題意;對(duì)于D,SKIPIF1<0,函數(shù)定義域?yàn)镾KIPIF1<0,而SKIPIF1<0且SKIPIF1<0,如當(dāng)SKIPIF1<0,SKIPIF1<0,D不符合題意.故選:C.【點(diǎn)睛】本題解題關(guān)鍵是理解基本不等式的使用條件,明確“一正二定三相等”的意義,再結(jié)合有關(guān)函數(shù)的性質(zhì)即可解出.5.(2022·浙江·統(tǒng)考高考真題)已知SKIPIF1<0,則SKIPIF1<0(

)A.25 B.5 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)指數(shù)式與對(duì)數(shù)式的互化,冪的運(yùn)算性質(zhì)以及對(duì)數(shù)的運(yùn)算性質(zhì)即可解出.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:C.6.(2020·全國(guó)·統(tǒng)考高考真題)若SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】將不等式變?yōu)镾KIPIF1<0,根據(jù)SKIPIF1<0的單調(diào)性知SKIPIF1<0,以此去判斷各個(gè)選項(xiàng)中真數(shù)與SKIPIF1<0的大小關(guān)系,進(jìn)而得到結(jié)果.【詳解】由SKIPIF1<0得:SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上的增函數(shù),SKIPIF1<0為SKIPIF1<0上的減函數(shù),SKIPIF1<0為SKIPIF1<0上的增函數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則A正確,B錯(cuò)誤;SKIPIF1<0與SKIPIF1<0的大小不確定,故CD無(wú)法確定.故選:A.【點(diǎn)睛】本題考查對(duì)數(shù)式的大小的判斷問(wèn)題,解題關(guān)鍵是能夠通過(guò)構(gòu)造函數(shù)的方式,利用函數(shù)的單調(diào)性得到SKIPIF1<0的大小關(guān)系,考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想.7.(2022·全國(guó)·統(tǒng)考高考真題)設(shè)SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】構(gòu)造函數(shù)SKIPIF1<0,導(dǎo)數(shù)判斷其單調(diào)性,由此確定SKIPIF1<0的大小.【詳解】方法一:構(gòu)造法設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0故選:C.方法二:比較法解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0;②SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0故SKIPIF1<0題型一指數(shù)冪的化簡(jiǎn)與求值策略方法指數(shù)冪運(yùn)算的一般原則(1)有括號(hào)的先算括號(hào)里的,無(wú)括號(hào)的先算指數(shù)運(yùn)算.(2)先乘除后加減,負(fù)指數(shù)冪化成正指數(shù)冪的倒數(shù).(3)底數(shù)是負(fù)數(shù),先確定符號(hào);底數(shù)是小數(shù),先化成分?jǐn)?shù);底數(shù)是帶分?jǐn)?shù)的,先化成假分?jǐn)?shù).(4)若是根式,應(yīng)化為分?jǐn)?shù)指數(shù)冪,盡可能用冪的形式表示,運(yùn)用指數(shù)冪的運(yùn)算性質(zhì)來(lái)解答.【典例1】計(jì)算:(1)SKIPIF1<0;(2)已知:SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)利用指數(shù)冪的運(yùn)算性質(zhì)可求得所求代數(shù)式的值;(2)在等式SKIPIF1<0兩邊平方可得出SKIPIF1<0,再利用平方關(guān)系可求得SKIPIF1<0,代入計(jì)算可得出SKIPIF1<0的值.【詳解】(1)解:原式SKIPIF1<0.(2)解:因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,可得,SKIPIF1<0,因此,SKIPIF1<0.【題型訓(xùn)練】一、單選題1.(2023春·湖南·高三校聯(lián)考階段練習(xí))SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用指數(shù)的運(yùn)算性質(zhì)可求得所求代數(shù)式的值.【詳解】SKIPIF1<0.故選:B.2.(2023·全國(guó)·高三專題練習(xí))下列結(jié)論中,正確的是(

)A.設(shè)SKIPIF1<0則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)分式指數(shù)冪及根式的運(yùn)算法則,正確運(yùn)算,即可判斷出正誤.【詳解】對(duì)于A,根據(jù)分式指數(shù)冪的運(yùn)算法則,可得SKIPIF1<0,選項(xiàng)A錯(cuò)誤;對(duì)于B,SKIPIF1<0,故SKIPIF1<0,選項(xiàng)B正確;對(duì)于C,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,選項(xiàng)C錯(cuò)誤;對(duì)于D,SKIPIF1<0,選項(xiàng)D錯(cuò)誤.故選:B.二、填空題3.(2023·全國(guó)·高三專題練習(xí))若SKIPIF1<0,則SKIPIF1<0______【答案】SKIPIF1<0【分析】在等式SKIPIF1<0兩邊平方,可得出SKIPIF1<0的值.【詳解】在等式SKIPIF1<0兩邊平方可得SKIPIF1<0,因此,SKIPIF1<0.故答案為:SKIPIF1<0.4.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,化簡(jiǎn)二次根式SKIPIF1<0的值是________【答案】SKIPIF1<0.【分析】利用根式的性質(zhì)進(jìn)行化簡(jiǎn).【詳解】由SKIPIF1<0可知,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.5.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0=__________【答案】SKIPIF1<0【分析】利用立方和公式化簡(jiǎn),再代入求值即可.【詳解】SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<06.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值為_(kāi)_________.【答案】SKIPIF1<0【分析】將SKIPIF1<0變形為SKIPIF1<0,設(shè)SKIPIF1<0,求出t的值,SKIPIF1<0可化為SKIPIF1<0,即可求得答案.【詳解】由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,(SKIPIF1<0舍去),故SKIPIF1<0,故答案為:SKIPIF1<0三、解答題7.(2023·全國(guó)·高三專題練習(xí))(1)計(jì)算SKIPIF1<0;(2)若SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)-5;(2)14.【分析】(1)由題意利用分?jǐn)?shù)指數(shù)冪的運(yùn)算法則,計(jì)算求得結(jié)果.(2)由題意兩次利用完全平方公式,計(jì)算求得結(jié)果.【詳解】(1)SKIPIF1<00.3﹣1﹣36+33+1SKIPIF1<036+27+1SKIPIF1<05.(2)若SKIPIF1<0,∴xSKIPIF1<02=6,xSKIPIF1<04,∴x2+x﹣2+2=16,∴x2+x﹣2=14.8.(2023·全國(guó)·高三專題練習(xí))(1)計(jì)算:SKIPIF1<0;(2)已知SKIPIF1<0是方程SKIPIF1<0的兩根,求SKIPIF1<0的值.【答案】(1)16;(2)SKIPIF1<0.【分析】(1)把根式化為分?jǐn)?shù)指數(shù)冪,然后由冪的運(yùn)算法則計(jì)算.(2)由韋達(dá)定理筣出SKIPIF1<0,求出SKIPIF1<0,求值式變形后代入已知值即可得.【詳解】(1)原式=SKIPIF1<0SKIPIF1<0;(2)由題意SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,題型二指數(shù)函數(shù)的圖像與性質(zhì)策略方法解決指數(shù)函數(shù)有關(guān)問(wèn)題,思路是從它們的圖像與性質(zhì)考慮,按照數(shù)形結(jié)合的思路分析,從圖像與性質(zhì)找到解題的突破口,但要注意底數(shù)對(duì)問(wèn)題的影響.【典例1】函數(shù)SKIPIF1<0有兩個(gè)不同的零點(diǎn),則SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖象可能為(

)A.B.C.D.【答案】B【分析】根據(jù)函數(shù)SKIPIF1<0有兩個(gè)不同的零點(diǎn),求出SKIPIF1<0的范圍,再根據(jù)函數(shù)SKIPIF1<0的圖象是由函數(shù)SKIPIF1<0的圖象向下平移SKIPIF1<0個(gè)單位得到的,作出函數(shù)SKIPIF1<0的大致圖象,即可得解.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0有兩個(gè)不同的零點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,則在函數(shù)SKIPIF1<0中SKIPIF1<0,函數(shù)SKIPIF1<0的圖象是由函數(shù)SKIPIF1<0的圖象向下平移SKIPIF1<0個(gè)單位得到的,作出函數(shù)SKIPIF1<0的大致圖象,如圖所示,所以SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖象可能為B選項(xiàng).故選:B.【典例2】已知函數(shù)SKIPIF1<0的圖像恒過(guò)一點(diǎn)P,且點(diǎn)P在直線SKIPIF1<0的圖像上,則SKIPIF1<0的最小值為()A.4 B.6 C.7 D.8【答案】D【分析】求出函數(shù)SKIPIF1<0的圖象所過(guò)的定點(diǎn)坐標(biāo),由此建立SKIPIF1<0的關(guān)系,再利用均值不等式“1”的妙用求解作答.【詳解】函數(shù)SKIPIF1<0中,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),恒有SKIPIF1<0,則點(diǎn)SKIPIF1<0,依題意,SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,因此SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),所以SKIPIF1<0的最小值為8.故選:D【典例3】比較下列幾組值的大?。?1)SKIPIF1<0和SKIPIF1<0;(2)SKIPIF1<0和SKIPIF1<0;(3)SKIPIF1<0和SKIPIF1<0;(4)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0>SKIPIF1<0(4)SKIPIF1<0【分析】(1)(2)(3)(4)利用指數(shù)函數(shù)的單調(diào)性分析比較大小即可(1)由于SKIPIF1<0,SKIPIF1<0.∵SKIPIF1<0在SKIPIF1<0上為增函數(shù),且SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0;(2)由于SKIPIF1<0.∵SKIPIF1<0在SKIPIF1<0上為減函數(shù),且SKIPIF1<0,∴SKIPIF1<0;(3)∵SKIPIF1<0在SKIPIF1<0上為減函數(shù),SKIPIF1<0在SKIPIF1<0上為增函數(shù),且SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0;(4)∵SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上為增函數(shù),且SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0.【題型訓(xùn)練】一、單選題1.(2023·天津河?xùn)|·一模)如圖中,①②③④中不屬于函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0中一個(gè)的是(

)A.① B.② C.③ D.④【答案】B【分析】根據(jù)指數(shù)函數(shù)的圖象的特征即可得答案.【詳解】解:由指數(shù)函數(shù)的性質(zhì)可知:①是SKIPIF1<0的部分圖象;③是SKIPIF1<0的部分圖象;④是SKIPIF1<0的部分圖象;所以只有②不是指數(shù)函數(shù)的圖象.故選:B.2.(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)與函數(shù)SKIPIF1<0的圖象可能是(

)A. B.C. D.【答案】A【分析】分析各選項(xiàng)中兩函數(shù)的單調(diào)性及其圖象與SKIPIF1<0軸的交點(diǎn)位置,即可得出合適的選項(xiàng).【詳解】A選項(xiàng),函數(shù)SKIPIF1<0為減函數(shù),則SKIPIF1<0,且函數(shù)SKIPIF1<0的圖象交SKIPIF1<0軸正半軸點(diǎn)SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,函數(shù)SKIPIF1<0為增函數(shù),且函數(shù)SKIPIF1<0交SKIPIF1<0軸正半軸于點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,A滿足;對(duì)于B選項(xiàng),函數(shù)SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,函數(shù)SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,顯然SKIPIF1<0,B不滿足;對(duì)于C選項(xiàng),函數(shù)SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,函數(shù)SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,顯然SKIPIF1<0,C不滿足;對(duì)于D選項(xiàng),函數(shù)SKIPIF1<0為減函數(shù),則SKIPIF1<0,函數(shù)SKIPIF1<0為減函數(shù),則SKIPIF1<0,D不滿足.故選:A.3.(2023·云南紅河·云南省建水第一中學(xué)??寄M預(yù)測(cè))函數(shù)SKIPIF1<0(其中SKIPIF1<0,SKIPIF1<0)的圖象恒過(guò)的定點(diǎn)是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】令SKIPIF1<0可得定點(diǎn).【詳解】令SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,函數(shù)SKIPIF1<0(其中SKIPIF1<0,SKIPIF1<0)的圖象恒過(guò)的定點(diǎn)是SKIPIF1<0.故選:B.4.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖象過(guò)定點(diǎn)SKIPIF1<0,則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)指數(shù)型函數(shù)的定點(diǎn)求解SKIPIF1<0,代入后再求解一元二次不等式.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0,所以不等式為SKIPIF1<0,解得SKIPIF1<0,所以不等式的解集為SKIPIF1<0.故選:D5.(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0的圖像恒過(guò)定點(diǎn)A,若點(diǎn)A在雙曲線SKIPIF1<0上,則m-n的最大值為(

)A.6 B.-2 C.1 D.4【答案】D【分析】令SKIPIF1<0,求得SKIPIF1<0,由點(diǎn)A在雙曲線上,得到SKIPIF1<0,然后由“1”的代換,利用基本不等式求解.【詳解】令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,因?yàn)辄c(diǎn)A在雙曲線SKIPIF1<0上,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,所以m-n的最大值為4故選:D6.(2023·天津·一模)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)指數(shù)函數(shù),冪函數(shù)的性質(zhì)即可判斷SKIPIF1<0,SKIPIF1<0,再對(duì)SKIPIF1<0,SKIPIF1<0進(jìn)行取對(duì)數(shù),結(jié)合對(duì)數(shù)函數(shù)的性質(zhì)即可判斷SKIPIF1<0,進(jìn)而即可得到答案.【詳解】由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:D.7.(2023·北京東城·統(tǒng)考二模)設(shè)函數(shù)SKIPIF1<0,若SKIPIF1<0為增函數(shù),則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】首先分析函數(shù)在各段函數(shù)的單調(diào)性,依題意可得SKIPIF1<0且SKIPIF1<0,結(jié)合SKIPIF1<0與SKIPIF1<0的函數(shù)圖象及增長(zhǎng)趨勢(shì)求出參數(shù)的取值范圍.【詳解】因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0函數(shù)單調(diào)遞增,又SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,要使函數(shù)SKIPIF1<0為增函數(shù),則SKIPIF1<0且SKIPIF1<0,又函數(shù)SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有兩個(gè)交點(diǎn)SKIPIF1<0和SKIPIF1<0,且SKIPIF1<0的增長(zhǎng)趨勢(shì)比SKIPIF1<0快得多,SKIPIF1<0與SKIPIF1<0的函數(shù)圖象如下所示:所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B8.(2023·浙江·高三專題練習(xí))已知SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用中間值SKIPIF1<0比較a,b的大小,再讓b,c與中間值SKIPIF1<0比較,判斷b,c的大小,即可得解.【詳解】SKIPIF1<0,又因?yàn)橥ㄟ^(guò)計(jì)算知SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:B二、多選題9.(2023·黑龍江哈爾濱·哈爾濱三中校考二模)點(diǎn)SKIPIF1<0在函數(shù)SKIPIF1<0的圖象上,當(dāng)SKIPIF1<0,則SKIPIF1<0可能等于(

)A.-1 B.SKIPIF1<0 C.SKIPIF1<0 D.0【答案】BC【分析】根據(jù)目標(biāo)式的幾何意義為SKIPIF1<0在SKIPIF1<0部分圖象上的動(dòng)點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0所成直線的斜率SKIPIF1<0,即可求范圍.【詳解】由SKIPIF1<0表示SKIPIF1<0與點(diǎn)SKIPIF1<0所成直線的斜率SKIPIF1<0,又SKIPIF1<0是SKIPIF1<0在SKIPIF1<0部分圖象上的動(dòng)點(diǎn),圖象如下:如上圖,SKIPIF1<0,則SKIPIF1<0,只有B、C滿足.故選:BC三、填空題10.(2023·全國(guó)·高三專題練習(xí))請(qǐng)寫(xiě)出一個(gè)同時(shí)滿足下列條件①②③的函數(shù)SKIPIF1<0____________.①SKIPIF1<0;②對(duì)任意SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;③SKIPIF1<0.【答案】SKIPIF1<0(答案不唯一).【分析】根據(jù)SKIPIF1<0的圖像經(jīng)過(guò)原點(diǎn),且在R上單調(diào)遞增,又SKIPIF1<0,利用指數(shù)函數(shù)的圖像和性質(zhì)構(gòu)造函數(shù)即可.【詳解】根據(jù)題意知SKIPIF1<0的圖像經(jīng)過(guò)原點(diǎn),且在R上單調(diào)遞增,又SKIPIF1<0.考慮到圖像有“漸近線”的指數(shù)函數(shù),構(gòu)造SKIPIF1<0符合題意.故答案為:SKIPIF1<0(答案不唯一)11.(2023秋·吉林松原·高三前郭爾羅斯縣第五中學(xué)??计谀┮阎猄KIPIF1<0為SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則不等式SKIPIF1<0的解集為_(kāi)__________.【答案】SKIPIF1<0【分析】由函數(shù)的奇偶性與單調(diào)性轉(zhuǎn)化后求解,【詳解】由函數(shù)SKIPIF1<0與SKIPIF1<0均在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0為SKIPIF1<0上的奇函數(shù),故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0等價(jià)于SKIPIF1<0,得SKIPIF1<0,故答案為:SKIPIF1<012.(2023·全國(guó)·高三專題練習(xí))若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則k的取值范圍為_(kāi)___________.【答案】SKIPIF1<0【分析】先畫(huà)出函數(shù)SKIPIF1<0,再根據(jù)函數(shù)在SKIPIF1<0上單調(diào)遞減求解.【詳解】解:因?yàn)楹瘮?shù)SKIPIF1<0的圖象是由函數(shù)SKIPIF1<0的圖象向下平移一個(gè)單位后,再把位于x軸下方的圖象沿x軸翻折到x軸上方得到的,函數(shù)圖象如圖所示:由圖象知,其在SKIPIF1<0上單調(diào)遞減,所以k的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0四、解答題13.(2023·全國(guó)·高三練習(xí))已知函數(shù)SKIPIF1<0(a為常數(shù))和函數(shù)SKIPIF1<0,且SKIPIF1<0為奇函數(shù).(1)求實(shí)數(shù)a的值;(2)設(shè)不等式SKIPIF1<0恒成立,試求實(shí)數(shù)SKIPIF1<0的范圍.【答案】(1)1(2)SKIPIF1<0【分析】(1)根據(jù)奇函數(shù)的定義求出a;(2)運(yùn)用參數(shù)分離法,構(gòu)造函數(shù),運(yùn)用函數(shù)的單調(diào)性求解.【詳解】(1)SKIPIF1<0為奇函數(shù),SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,經(jīng)檢驗(yàn)符合題意;(2)由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0;題型三解指數(shù)方程與不等式策略方法指數(shù)方程或不等式的解法(1)解指數(shù)方程或不等式的依據(jù)①af(x)=ag(x)?f(x)=g(x).②af(x)>ag(x),當(dāng)a>1時(shí),等價(jià)于f(x)>g(x);當(dāng)0<a<1時(shí),等價(jià)于f(x)<g(x).(2)解指數(shù)方程或不等式的方法先利用冪的運(yùn)算性質(zhì)化為同底數(shù)冪,再利用函數(shù)單調(diào)性轉(zhuǎn)化為一般不等式求解.【典例1】不等式SKIPIF1<0對(duì)于SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【分析】由題意結(jié)合指數(shù)函數(shù)的單調(diào)性,得SKIPIF1<0對(duì)于SKIPIF1<0恒成立,設(shè)SKIPIF1<0,結(jié)合二次函數(shù)的性質(zhì)可求得答案.【詳解】由SKIPIF1<0得SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0對(duì)于SKIPIF1<0恒成立,設(shè)SKIPIF1<0,顯然SKIPIF1<0開(kāi)口向上,對(duì)稱軸為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值0,則SKIPIF1<0,即a的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.【題型訓(xùn)練】一、單選題1.(2023·海南·統(tǒng)考模擬預(yù)測(cè))已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】先求出集合A,集合的交集運(yùn)算即可求出SKIPIF1<0.【詳解】SKIPIF1<0集合SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:A.2.(2023·河北·高三學(xué)業(yè)考試)設(shè)函數(shù)SKIPIF1<0則滿足SKIPIF1<0的SKIPIF1<0取值范圍是A.[-1,2] B.[0,2] C.[1,+SKIPIF1<0) D.[0,+SKIPIF1<0)【答案】D【分析】根據(jù)函數(shù)解析式,結(jié)合指對(duì)數(shù)函數(shù)的單調(diào)性,討論不同區(qū)間對(duì)應(yīng)SKIPIF1<0的x范圍,然后取并.【詳解】由SKIPIF1<0,可得SKIPIF1<0;或SKIPIF1<0,可得SKIPIF1<0;綜上,SKIPIF1<0的SKIPIF1<0取值范圍是SKIPIF1<0.故選:D3.(2023·全國(guó)·高三專題練習(xí))若關(guān)于x的不等式SKIPIF1<0有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】分離參數(shù)將問(wèn)題轉(zhuǎn)化為SKIPIF1<0有解,計(jì)算即可.【詳解】由題知SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.因?yàn)殛P(guān)于SKIPIF1<0的不等式SKIPIF1<0有實(shí)數(shù)解,即SKIPIF1<0SKIPIF1<0有實(shí)數(shù)解,所以SKIPIF1<0,即SKIPIF1<0.故選:A4.(2023·全國(guó)·高三專題練習(xí))若不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】分析:首先根據(jù)指數(shù)函數(shù)的性質(zhì),將不等式恒成立轉(zhuǎn)化為SKIPIF1<0恒成立,利用判別式SKIPIF1<0,從而求得實(shí)數(shù)SKIPIF1<0的取值范圍.詳解:不等式SKIPIF1<0恒成立,即SKIPIF1<0,即SKIPIF1<0恒成立,即SKIPIF1<0恒成立,所以SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0,故選B.點(diǎn)睛:該題考查的是有關(guān)不等式恒成立,求參數(shù)的取值范圍的問(wèn)題,在解題的過(guò)程中,需要明確指數(shù)式的運(yùn)算法則,注意應(yīng)用指數(shù)函數(shù)的單調(diào)性,得到指數(shù)所滿足的大小關(guān)系,利用二次不等式恒成立問(wèn)題,結(jié)合式子的判別式,求得結(jié)果.二、填空題5.(2023·全國(guó)·高三專題練習(xí))SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍為_(kāi)__________.【答案】SKIPIF1<0【分析】分別根據(jù)對(duì)數(shù)和指數(shù)函數(shù)的單調(diào)性解不等式,再求交集即可.【詳解】SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0成立;當(dāng)SKIPIF1<0時(shí),解得SKIPIF1<0.所以SKIPIF1<0又SKIPIF1<0,SKIPIF1<0∴a的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<06.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0的圖象關(guān)于原點(diǎn)對(duì)稱,若SKIPIF1<0,則SKIPIF1<0的取值范圍為_(kāi)_______.【答案】SKIPIF1<0【分析】先求得a的值,再利用函數(shù)單調(diào)性把不等式SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,解之即可求得SKIPIF1<0的取值范圍.【詳解】定義在R上函數(shù)SKIPIF1<0的圖象關(guān)于原點(diǎn)對(duì)稱,則SKIPIF1<0,解之得SKIPIF1<0,經(jīng)檢驗(yàn)符合題意SKIPIF1<0均為R上增函數(shù),則SKIPIF1<0為R上增函數(shù),又SKIPIF1<0,則不等式SKIPIF1<0等價(jià)于SKIPIF1<0,解之得SKIPIF1<0故答案為:SKIPIF1<0三、解答題7.(2023·全國(guó)·高三練習(xí))解下列方程:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0或SKIPIF1<0;(3)SKIPIF1<0或SKIPIF1<0;(4)SKIPIF1<0【分析】(1)(2)根據(jù)指數(shù)冪的運(yùn)算法則結(jié)合指數(shù)函數(shù)的性質(zhì)即得;(3)(4)根據(jù)對(duì)數(shù)的運(yùn)算律結(jié)合對(duì)數(shù)函數(shù)的性質(zhì)即得.【詳解】(1)由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0;(2)由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0;(3)因?yàn)镾KIPIF1<0,所以原方程可化為SKIPIF1<0,即SKIPIF1<0,兩邊取對(duì)數(shù)可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,經(jīng)檢驗(yàn)SKIPIF1<0或SKIPIF1<0是原方程的解,所以SKIPIF1<0或SKIPIF1<0;(4)由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,經(jīng)檢驗(yàn)滿足題意,所以SKIPIF1<0.8.(2023秋·江西鷹潭·高三貴溪市實(shí)驗(yàn)中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0,與SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱的圖象過(guò)點(diǎn)SKIPIF1<0.(1)求SKIPIF1<0的值;(2)求不等式SKIPIF1<0的解集.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0且SKIPIF1<0}.【分析】(1)由對(duì)稱性知SKIPIF1<0的圖象過(guò)點(diǎn)SKIPIF1<0,代入后可得SKIPIF1<0值;(2)結(jié)合指數(shù)函數(shù)性質(zhì)解不等式.【詳解】(1)由題意SKIPIF1<0的圖象過(guò)點(diǎn)SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0;(2)由(1)SKIPIF1<0,顯然SKIPIF1<0,不等式SKIPIF1<0為SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,SKIPIF1<0,所以不等式的解集為SKIPIF1<0且SKIPIF1<0}.題型四指數(shù)函數(shù)的綜合應(yīng)用策略方法指數(shù)函數(shù)通過(guò)平移、伸縮及翻折等變換,或與其他函數(shù)進(jìn)行結(jié)合形成復(fù)合函數(shù)時(shí),我們對(duì)這類問(wèn)題的解決方式是進(jìn)行還原分離,化繁為簡(jiǎn),借助函數(shù)的單調(diào)性、奇偶性、對(duì)稱性及周期性解決問(wèn)題.【典例1】函數(shù)SKIPIF1<0單調(diào)遞增區(qū)間為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)復(fù)合函數(shù)同增異減,即可判斷出單調(diào)遞增區(qū)間.【詳解】由SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0為減函數(shù),求SKIPIF1<0的單調(diào)遞增區(qū)間,等價(jià)于求SKIPIF1<0的單調(diào)遞減區(qū)間,因?yàn)镾KIPIF1<0在SKIPIF1<0單調(diào)遞減,所以函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間是SKIPIF1<0,故選:C.【典例2】當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,則實(shí)數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】將SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,轉(zhuǎn)化為SKIPIF1<0對(duì)一切

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論