![新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第26講 復(fù)數(shù)(原卷版)_第1頁](http://file4.renrendoc.com/view2/M01/01/09/wKhkFma0FQ-AKvMhAAFg35MtHvk734.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第26講 復(fù)數(shù)(原卷版)_第2頁](http://file4.renrendoc.com/view2/M01/01/09/wKhkFma0FQ-AKvMhAAFg35MtHvk7342.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第26講 復(fù)數(shù)(原卷版)_第3頁](http://file4.renrendoc.com/view2/M01/01/09/wKhkFma0FQ-AKvMhAAFg35MtHvk7343.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第26講 復(fù)數(shù)(原卷版)_第4頁](http://file4.renrendoc.com/view2/M01/01/09/wKhkFma0FQ-AKvMhAAFg35MtHvk7344.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第26講 復(fù)數(shù)(原卷版)_第5頁](http://file4.renrendoc.com/view2/M01/01/09/wKhkFma0FQ-AKvMhAAFg35MtHvk7345.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第26講復(fù)數(shù)(精講)題型目錄一覽①復(fù)數(shù)的有關(guān)概念②復(fù)數(shù)的四則運(yùn)算③復(fù)數(shù)的模長④復(fù)數(shù)相等和共軛復(fù)數(shù)⑤復(fù)數(shù)的幾何意義⑥復(fù)數(shù)的三角形式一、知識(shí)點(diǎn)梳理一、知識(shí)點(diǎn)梳理一、復(fù)數(shù)的概念=1\*GB3①復(fù)數(shù)的概念:形如a+bi(a,b∈R)的數(shù)叫做復(fù)數(shù),a,b分別是它的實(shí)部和虛部,SKIPIF1<0叫虛數(shù)單位,滿足SKIPIF1<0(1)當(dāng)且僅當(dāng)b=0時(shí),a+bi為實(shí)數(shù);(2)當(dāng)b≠0時(shí),a+bi為虛數(shù);(3)當(dāng)a=0且b≠0時(shí),a+bi為純虛數(shù).其中,兩個(gè)實(shí)部相等,虛部互為相反數(shù)的復(fù)數(shù)互為共軛復(fù)數(shù).=2\*GB3②兩個(gè)復(fù)數(shù)SKIPIF1<0相等SKIPIF1<0(兩復(fù)數(shù)對應(yīng)同一點(diǎn))=3\*GB3③復(fù)數(shù)的模:復(fù)數(shù)SKIPIF1<0的模,其計(jì)算公式SKIPIF1<0二、復(fù)數(shù)的加、減、乘、除的運(yùn)算法則1、復(fù)數(shù)運(yùn)算(1)SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0其中SKIPIF1<0,叫z的模;SKIPIF1<0是SKIPIF1<0的共軛復(fù)數(shù)SKIPIF1<0.(3)SKIPIF1<0.實(shí)數(shù)的全部運(yùn)算律(加法和乘法的交換律、結(jié)合律、分配律及整數(shù)指數(shù)冪運(yùn)算法則)都適用于復(fù)數(shù).2、復(fù)數(shù)的幾何意義(1)復(fù)數(shù)SKIPIF1<0對應(yīng)平面內(nèi)的點(diǎn)SKIPIF1<0;(2)復(fù)數(shù)SKIPIF1<0對應(yīng)平面向量SKIPIF1<0;(3)復(fù)平面內(nèi)實(shí)軸上的點(diǎn)表示實(shí)數(shù),除原點(diǎn)外虛軸上的點(diǎn)表示虛數(shù),各象限內(nèi)的點(diǎn)都表示復(fù)數(shù).(4)復(fù)數(shù)SKIPIF1<0的模SKIPIF1<0表示復(fù)平面內(nèi)的點(diǎn)SKIPIF1<0到原點(diǎn)的距離.三、復(fù)數(shù)的三角形式(1)復(fù)數(shù)的三角表示式一般地,任何一個(gè)復(fù)數(shù)SKIPIF1<0都可以表示成SKIPIF1<0形式,其中SKIPIF1<0是復(fù)數(shù)SKIPIF1<0的模;SKIPIF1<0是以SKIPIF1<0軸的非負(fù)半軸為始邊,向量SKIPIF1<0所在射線(射線SKIPIF1<0)為終邊的角,叫做復(fù)數(shù)SKIPIF1<0的輻角.SKIPIF1<0叫做復(fù)數(shù)SKIPIF1<0的三角表示式,簡稱三角形式.(2)輻角的主值任何一個(gè)不為零的復(fù)數(shù)的輻角有無限多個(gè)值,且這些值相差SKIPIF1<0的整數(shù)倍.規(guī)定在SKIPIF1<0范圍內(nèi)的輻角SKIPIF1<0的值為輻角的主值.通常記作SKIPIF1<0,即SKIPIF1<0.復(fù)數(shù)的代數(shù)形式可以轉(zhuǎn)化為三角形式,三角形式也可以轉(zhuǎn)化為代數(shù)形式.(3)三角形式下的兩個(gè)復(fù)數(shù)相等兩個(gè)非零復(fù)數(shù)相等當(dāng)且僅當(dāng)它們的模與輻角的主值分別相等.(4)復(fù)數(shù)三角形式的乘法運(yùn)算①兩個(gè)復(fù)數(shù)相乘,積的模等于各復(fù)數(shù)的模的積,積的輻角等于各復(fù)數(shù)的輻角的和,即SKIPIF1<0.(5)復(fù)數(shù)三角形式的除法運(yùn)算兩個(gè)復(fù)數(shù)相除,商的模等于被除數(shù)的模除以除數(shù)的模所得的商,商的輻角等于被除數(shù)的輻角減去除數(shù)的輻角所得的差,即SKIPIF1<0.【常用結(jié)論】①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.②SKIPIF1<0.二、題型分類精講二、題型分類精講題型一復(fù)數(shù)的有關(guān)概念策略方法解決復(fù)數(shù)概念問題的方法及注意事項(xiàng)(1)求一個(gè)復(fù)數(shù)的實(shí)部與虛部,只需將已知的復(fù)數(shù)化為代數(shù)形式z=a+bi(a,b∈R),則該復(fù)數(shù)的實(shí)部為a,虛部為b.(2)復(fù)數(shù)是實(shí)數(shù)的條件:①z=a+bi∈R?b=0(a,b∈R);②z∈R?z=eq\x\to(z);③z∈R?z2≥0.(3)復(fù)數(shù)是純虛數(shù)的條件:①z=a+bi是純虛數(shù)?a=0且b≠0(a,b∈R);②z是純虛數(shù)?z+eq\x\to(z)=0(z≠0);③z是純虛數(shù)?z2<0.【典例1】(單選題)已知i為虛數(shù)單位,若復(fù)數(shù)SKIPIF1<0是純虛數(shù),則實(shí)數(shù)a等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【題型訓(xùn)練】一、單選題1.復(fù)數(shù)SKIPIF1<0的虛部為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.162.已知復(fù)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的虛部是(
)A.2 B.2i C.1 D.i3.復(fù)數(shù)z滿足SKIPIF1<0,則z的實(shí)部是(
)A.-1 B.1 C.-3 D.34.復(fù)數(shù)SKIPIF1<0,則復(fù)數(shù)SKIPIF1<0的實(shí)部和虛部分別是(
)A.3,2 B.3,2i C.1,2 D.1,2i5.設(shè)復(fù)數(shù)SKIPIF1<0的實(shí)部與虛部互為相反數(shù),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.36.已知復(fù)數(shù)SKIPIF1<0是純虛數(shù),則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.12 C.SKIPIF1<0 D.37.若復(fù)數(shù)SKIPIF1<0是純虛數(shù),則SKIPIF1<0(
)A.-2 B.2 C.-1 D.1題型二復(fù)數(shù)的四則運(yùn)算策略方法復(fù)數(shù)代數(shù)形式運(yùn)算問題的解題策略(1)復(fù)數(shù)的加、減、乘法:復(fù)數(shù)的加、減、乘法類似于多項(xiàng)式的運(yùn)算,可將含有虛數(shù)單位i的看作一類同類項(xiàng),不含i的看作另一類同類項(xiàng),分別合并即可.(2)復(fù)數(shù)的除法:除法的關(guān)鍵是分子分母同乘以分母的共軛復(fù)數(shù),使分母實(shí)數(shù)化.解題中要注意把i的冪寫成最簡形式.【典例1】(單選題)若復(fù)數(shù)SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0為虛數(shù)單位),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【題型訓(xùn)練】一、單選題1.若復(fù)數(shù)SKIPIF1<0(SKIPIF1<0是虛數(shù)單位),則z=(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.已知SKIPIF1<0為虛數(shù)單位,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.若復(fù)數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.若復(fù)數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.已知SKIPIF1<0,則SKIPIF1<0(
).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.08.若復(fù)數(shù)SKIPIF1<0所對應(yīng)的點(diǎn)在第四象限,且滿足SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型三復(fù)數(shù)的模長策略方法SKIPIF1<0【典例1】(單選題)已知復(fù)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.5【題型訓(xùn)練】一、單選題1.已知復(fù)數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.102.已知復(fù)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.104.若復(fù)數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.4 D.55.已知SKIPIF1<0為虛數(shù)單位,且復(fù)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(
)A.1 B.2 C.SKIPIF1<0 D.SKIPIF1<06.SKIPIF1<0(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.27.已知復(fù)數(shù)SKIPIF1<0滿足SKIPIF1<0(其中SKIPIF1<0為虛數(shù)單位),則復(fù)數(shù)SKIPIF1<0的虛部為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.復(fù)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<09.已知復(fù)數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.10 C.SKIPIF1<0 D.210.設(shè)復(fù)數(shù)SKIPIF1<0滿足SKIPIF1<0為純虛數(shù),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<011.已知SKIPIF1<0,SKIPIF1<0,虛數(shù)SKIPIF1<0是方程SKIPIF1<0的根,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<012.復(fù)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2題型四復(fù)數(shù)相等和共軛復(fù)數(shù)策略方法解決與集合的新定義有關(guān)問題的一般思路(1)在只含有z的方程中,z類似于代數(shù)方程中的x,可直接求解;(2)在z,eq\x\to(z),|z|中至少含有兩個(gè)的復(fù)數(shù)方程中,可設(shè)z=a+bi,a,b∈R,變換方程,利用兩復(fù)數(shù)相等的充要條件得出關(guān)于a,b的方程組,求出a,b,從而得出復(fù)數(shù)z.(3)求一個(gè)復(fù)數(shù)的共軛復(fù)數(shù),只需將此復(fù)數(shù)整理成標(biāo)準(zhǔn)的代數(shù)形式,實(shí)部不變,虛部變?yōu)橄喾磾?shù),即得原復(fù)數(shù)的共軛復(fù)數(shù).復(fù)數(shù)z1=a+bi與z2=c+di共軛?a=c,b=-d(a,b,c,d∈R).【典例1】(單選題)已知SKIPIF1<0為虛數(shù)單位,復(fù)數(shù)SKIPIF1<0,其中a,SKIPIF1<0,則(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【典例2】(單選題)若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【題型訓(xùn)練】一、單選題1.已知復(fù)數(shù)SKIPIF1<0,若SKIPIF1<0的共軛復(fù)數(shù)為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.5 C.SKIPIF1<0 D.102.已知SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.0 C.1 D.23.已知復(fù)數(shù)z滿足SKIPIF1<0,則SKIPIF1<0(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.24.已知復(fù)數(shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.25.復(fù)數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.已知復(fù)數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.已知i是虛數(shù)單位,設(shè)復(fù)數(shù)z的共軛復(fù)數(shù)為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.若復(fù)數(shù)SKIPIF1<0滿足SKIPIF1<0,其中SKIPIF1<0為虛數(shù)單位,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.已知復(fù)數(shù)SKIPIF1<0,則SKIPIF1<0的虛部為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.已知i為虛數(shù)單位,若復(fù)數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<011.已知SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.112.若SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<013.已知復(fù)數(shù)SKIPIF1<0是復(fù)數(shù)SKIPIF1<0的共軛復(fù)數(shù),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.4 D.214.已知復(fù)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的共軛復(fù)數(shù)的虛部為(
)A.2 B.SKIPIF1<0 C.4 D.SKIPIF1<015.)已知復(fù)數(shù)SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0為虛數(shù)單位),則復(fù)數(shù)SKIPIF1<0的虛部為(
)A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<016.已知復(fù)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.217.已知SKIPIF1<0(a,SKIPIF1<0,i為虛數(shù)單位),則復(fù)數(shù)SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.618.復(fù)數(shù)SKIPIF1<0,SKIPIF1<0(SKIPIF1<0為虛數(shù)單位),則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型五復(fù)數(shù)的幾何意義策略方法與復(fù)數(shù)幾何意義相關(guān)的問題的一般解法【典例1】在復(fù)平面中,復(fù)數(shù)SKIPIF1<0(SKIPIF1<0為虛數(shù)單位)對應(yīng)的點(diǎn)位于(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限【題型訓(xùn)練】一、單選題1.已知復(fù)數(shù)SKIPIF1<0,其中SKIPIF1<0為虛數(shù)單位,則復(fù)數(shù)SKIPIF1<0在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限2.復(fù)數(shù)SKIPIF1<0在復(fù)平面內(nèi)對應(yīng)的點(diǎn)所在的象限為(
)A.第一象限 B.第二象限C.第三象限 D.第四象限3.已知復(fù)數(shù)z滿足SKIPIF1<0,則復(fù)數(shù)z在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知復(fù)數(shù)z的共軛復(fù)數(shù)SKIPIF1<0,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知SKIPIF1<0,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知復(fù)數(shù)SKIPIF1<0(SKIPIF1<0是虛數(shù)單位),則SKIPIF1<0在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于(
)A.第一象限 B.第二象限C.第三象限 D.第四象限7.已知復(fù)數(shù)SKIPIF1<0滿足SKIPIF1<0(其中SKIPIF1<0為虛數(shù)單位),則復(fù)數(shù)SKIPIF1<0在復(fù)平面上對應(yīng)的點(diǎn)位于(
)A.第一象限 B.第二象限C.第三象限 D.第四象限8.若復(fù)數(shù)SKIPIF1<0,則復(fù)數(shù)SKIPIF1<0在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限9.若復(fù)數(shù)SKIPIF1<0在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于第二象限,則實(shí)數(shù)m的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<010.已知復(fù)數(shù)SKIPIF1<0與SKIPIF1<0在復(fù)平面內(nèi)對應(yīng)的點(diǎn)關(guān)于實(shí)軸對稱,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<011.已知SKIPIF1<0,則復(fù)數(shù)z在復(fù)平面上對應(yīng)的點(diǎn)在(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限12.)復(fù)數(shù)SKIPIF1<0滿足SKIPIF1<0在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<013.在復(fù)平面內(nèi),復(fù)數(shù)SKIPIF1<0對應(yīng)的點(diǎn)為SKIPIF1<0,則SKIPIF1<0(
)A.2 B.1 C.SKIPIF1<0 D.SKIPIF1<014.已知SKIPIF1<0,其中a,b為實(shí)數(shù),則在復(fù)平面內(nèi)復(fù)數(shù)SKIPIF1<0對應(yīng)的點(diǎn)位于(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限題型六復(fù)數(shù)的三角形式策略方法一般地,任何一個(gè)復(fù)數(shù)SKIPIF1<0都可以表示成SKIPIF1<0形式,其中SKIPIF1<0是復(fù)數(shù)SKIPIF1<0的模;SKIPIF1<0是以SKIPIF1<0軸的非負(fù)半軸為始邊,向量SKIPIF1<0所在射線(射線SKIPIF1<0)為終邊的角,叫做復(fù)數(shù)SKIPIF1<0的輻角.SKIPIF1<0叫做復(fù)數(shù)SKIPIF1<0的三角表示式,簡稱三角形式.【典例1】(單選題)把復(fù)數(shù)SKIPIF1<0化三角形式為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【題型訓(xùn)練】一、單選題1.歐拉公式SKIPIF1<0(e為自然對數(shù)的底數(shù),SKIPIF1<0為虛數(shù)單位)由瑞士數(shù)學(xué)家Euler(歐拉)首先發(fā)現(xiàn).它將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,被稱為“數(shù)學(xué)中的天橋”,則SKIPIF1<0(
)A.-1 B.1 C.-SKIPIF1<0 D.SKIPIF1<02.復(fù)數(shù)SKIPIF1<0的輻角主值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.歐拉是SKIPIF1<0世紀(jì)數(shù)學(xué)界最杰出的人物之一,他不但為數(shù)學(xué)界作出貢獻(xiàn),更把數(shù)學(xué)推至幾乎整個(gè)物理領(lǐng)域,其中歐拉公式的諸多公式中,SKIPIF1<0(SKIPIF1<0為自然對數(shù)的底數(shù),SKIPIF1<0為虛數(shù)單位)被稱為“數(shù)學(xué)中的天橋”,將復(fù)數(shù)?指數(shù)函數(shù)?三角函數(shù)聯(lián)系起來了.當(dāng)SKIPIF1<0時(shí),可得恒等式(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中外項(xiàng)目委托合同范文(2篇)
- 2025年代理的合作協(xié)議(4篇)
- 專題02 平面向量(解析版)
- 考點(diǎn)02常用邏輯用語(3種核心題型+基礎(chǔ)保分練+綜合提升練+拓展沖刺練)解析版
- 咨詢行業(yè)居間合作協(xié)議模板
- 水產(chǎn)市場半包裝修協(xié)議模板
- 工廠辦公室裝修合同
- 公路綠化項(xiàng)目居間合同
- 民航機(jī)場裝修合同核心條款
- 別墅定制裝修合同
- 2024年全國統(tǒng)一高考英語試卷(新課標(biāo)Ⅰ卷)含答案
- 四年級(jí)上冊數(shù)學(xué)課件-一般應(yīng)用題 全國通用(共26張PPT)
- 肝臟炎性假瘤的影像學(xué)表現(xiàn)培訓(xùn)課件
- 國家行政機(jī)關(guān)公文格式課件
- 業(yè)務(wù)員回款考核辦法
- 急性心梗的護(hù)理業(yè)務(wù)學(xué)習(xí)課件
- 2021年投標(biāo)部工作計(jì)劃
- 導(dǎo)向標(biāo)識(shí)系統(tǒng)設(shè)計(jì)(二)課件
- 好書推薦《西游記》共33張幻燈片
- 聚焦:如何推進(jìn)教育治理體系和治理能力現(xiàn)代化
- 化工儀表自動(dòng)化【第四章】自動(dòng)控制儀表
評論
0/150
提交評論