云南省臨滄市2022年數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第1頁
云南省臨滄市2022年數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第2頁
云南省臨滄市2022年數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第3頁
云南省臨滄市2022年數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第4頁
云南省臨滄市2022年數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.袋中有5個白球,x個紅球,從中隨機摸出一個球,恰為紅球的概率為,則x為A.25 B.20 C.15 D.102.為了解我縣目前九年級學生對中考體育的重視程度,從全縣5千多名九年級的學生中抽取200名學生作為樣本,對其進行中考體育項目的測試,200名學生的體育平均成績?yōu)?0分則我縣目前九年級學生中考體育水平大概在()A.40分 B.200分 C.5000 D.以上都有可能3.已知正比例函數(shù)的函數(shù)值隨自變量的增大而增大,則二次函數(shù)的圖象與軸的交點個數(shù)為()A.2 B.1 C.0 D.無法確定4.為了估計湖里有多少條魚,小華從湖里捕上條并做上標記,然后放回湖里,經(jīng)過一段時間待帶標記的魚完全混合于魚群中后,第二次捕得條,發(fā)現(xiàn)其中帶標記的魚條,通過這種調(diào)查方式,小華可以估計湖里有魚()A.條 B.條 C.條 D.條5.下列事件中,屬于隨機事件的是().A.13名同學中至少有兩名同學的生日在同一個月B.在只有白球的盒子里摸到黑球C.經(jīng)過交通信號燈的路口遇到紅燈D.用長為,,的三條線段能圍成一個邊長分別為,,的三角形6.已知正比例函數(shù)y1的圖象與反比例函數(shù)y2圖象相交于點A(2,4),下列說法正確的是(A.反比例函數(shù)y2的解析式是B.兩個函數(shù)圖象的另一交點坐標為(2,-4)C.當x<-2或0<x<2時,yD.正比例函數(shù)y1與反比例函數(shù)y2都隨7.若正比例函數(shù)y=mx(m≠0),y隨x的增大而減小,則它和二次函數(shù)y=mx2+m的圖象大致是()A. B. C. D.8.在平面直角坐標系中,把點繞原點順時針旋轉(zhuǎn),所得到的對應(yīng)點的坐標為()A. B. C. D.9.如圖,點A、B、C都在⊙O上,若∠AOC=140°,則∠B的度數(shù)是()A.70° B.80° C.110° D.140°10.關(guān)于x的一元二次方程(2x-1)2+n2+1=0的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法判定二、填空題(每小題3分,共24分)11.如圖,豎直放置的一個鋁合金窗框由矩形和弧形兩部分組成,AB=m,AD=2m,弧CD所對的圓心角為∠COD=120°.現(xiàn)將窗框繞點B順時針旋轉(zhuǎn)橫放在水平的地面上,這一過程中,窗框上的點到地面的最大高度為__m.12.若是關(guān)于的一元二次方程,則________.13.某游樂園的摩天輪(如圖1)有均勻分布在圓形轉(zhuǎn)輪邊緣的若干個座艙,人們坐在座艙中可以俯瞰美景,圖2是摩天輪的示意圖.摩天輪以固定的速度繞中心順時針方向轉(zhuǎn)動,轉(zhuǎn)一圈為分鐘.從小剛由登艙點進入摩天輪開始計時,到第12分鐘時,他乘坐的座艙到達圖2中的點_________處(填,,或),此點距地面的高度為_______m.14.方程x2=1的解是_____.15.兩個函數(shù)和(abc≠0)的圖象如圖所示,請直接寫出關(guān)于x的不等式的解集_______________.16.方程x2+2x﹣1=0配方得到(x+m)2=2,則m=_____.17.已知一列分式,,,,,,…,觀察其規(guī)律,則第n個分式是_______.18.一個不透明的口袋中裝有個紅球和個黃球,這些球除了顏色外,無其他差別,從中隨機摸出一個球,恰好是紅球的概率為__________.三、解答題(共66分)19.(10分)天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴重的公交車,計劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,(1)求購買A型和B型公交車每輛各需多少萬元?(2)預(yù)計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?20.(6分)(1)2y2+4y=y(tǒng)+2(用因式分解法)(2)x2﹣7x﹣18=0(用公式法)(3)4x2﹣8x﹣3=0(用配方法)21.(6分)已知關(guān)于的一元二次方程有兩個不相等的實數(shù)根(1)求的取值范圍;(2)若為正整數(shù),且該方程的根都是整數(shù),求的值.22.(8分)如圖,一次函數(shù)與反比例函數(shù)的圖象交于點和,與y軸交于點C.(1)=,=;(2)根據(jù)函數(shù)圖象可知,當>時,x的取值范圍是;(3)過點A作AD⊥x軸于點D,點P是反比例函數(shù)在第一象限的圖象上一點.設(shè)直線OP與線段AD交于點E,當:=3:1時,求點P的坐標.23.(8分)如圖,斜坡的坡度是1:2.2(坡面的鉛直高度與水平寬度的比稱為坡度),這個斜坡的水平寬度是22米,在坡頂處的同一水平面上()有一座古塔.在坡底處看塔頂?shù)难鼋鞘?5°,在坡頂處看塔頂?shù)难鼋鞘?0°,求塔高的長.(結(jié)果保留根號)24.(8分)為了測量豎直旗桿的高度,某數(shù)學興趣小組在地面上的點處豎直放了一根標桿,并在地面上放置一塊平面鏡,已知旗桿底端點、點、點在同一條直線上.該興趣小組在標桿頂端點恰好通過平面鏡觀測到旗桿頂點,在點觀測旗桿頂點的仰角為.觀測點的俯角為,已知標桿的長度為米,問旗桿的高度為多少米?(結(jié)果保留根號)25.(10分)如圖,在網(wǎng)格紙中,、都是格點,以為圓心,為半徑作圓,用無刻度的直尺完成以下畫圖:(不寫畫法)(1)在圓①中畫圓的一個內(nèi)接正六邊形;(2)在圖②中畫圓的一個內(nèi)接正八邊形.26.(10分)已知關(guān)于x的一元二次方程x2+x+m﹣1=1.(1)當m=1時,求方程的實數(shù)根.(2)若方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】考點:概率公式.分析:根據(jù)概率的求法,除去紅球的概率,就是白球的概率.找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.解答:解:從中任意取一個,恰為紅球的概率為4/5,,那從中任意取一個,恰為白球的概率就為1/5,據(jù)題意得5/(5+x)=1/5,解得x=1.∴袋中有紅球1個.故選B.點評:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=m/n2、A【分析】平均數(shù)可以反映一組數(shù)據(jù)的一般情況、和平均水平,樣本的平均數(shù)即可估算出總體的平均水平.【詳解】∵200名學生的體育平均成績?yōu)?0分,∴我縣目前九年級學生中考體育水平大概在40分,故選:A.【點睛】本題考查用樣本平均數(shù)估計總體的平均數(shù),平均數(shù)是描述數(shù)據(jù)集中位置的一個統(tǒng)計量,既可以用它來反映一組數(shù)據(jù)的一般情況、和平均水平,也可以用它進行不同組數(shù)據(jù)的比較,以看出組與組之間的差別.3、A【分析】根據(jù)正比例函數(shù)的性質(zhì)可以判斷k的正負情況,然后根據(jù)△的正負,即可判斷二次函數(shù)的圖象與軸的交點個數(shù),本題得以解決.【詳解】∵正比例函數(shù)的函數(shù)值隨自變量的增大而增大,∴k>0,∵二次函數(shù)為∴△=[?2(k+1)]2?4×1×(k2?1)=8k+8>0,∴二次函數(shù)為與軸的交點個數(shù)為2,故選:A.【點睛】本題考查二次函數(shù)與x軸的交點個數(shù)和正比例函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用根的判別式來解答.4、B【分析】利用樣本出現(xiàn)的概率估計整體即可.【詳解】設(shè)湖里有魚x條根據(jù)題意有解得,經(jīng)檢驗,x=800是所列方程的根且符合實際意義,故選B【點睛】本題主要考查用樣本估計整體,找到等量關(guān)系是解題的關(guān)鍵.5、C【分析】根據(jù)隨機事件,必然事件,不可能事件的定義對每一選項進行判斷即可.【詳解】A、必然事件,不符合題意;B、不可能事件,不符合題意;C、隨機事件,符合題意;D、不可能事件,不符合題意;故選C.【點睛】本題考查隨機事件,正確理解隨機事件,必然事件,不可能事件的定義是解題的關(guān)鍵.6、C【解析】由題意可求正比例函數(shù)解析式和反比例函數(shù)解析式,由正比例函數(shù)和反比例函數(shù)的性質(zhì)可判斷求解.【詳解】解:∵正比例函數(shù)y1的圖象與反比例函數(shù)y2的圖象相交于點∴正比例函數(shù)y1=2x∴兩個函數(shù)圖象的另一個角點為(-2,-4)∴A,B選項錯誤∵正比例函數(shù)y1=2x中,y隨x的增大而增大,反比例函數(shù)y2=8∴D選項錯誤∵當x<-2或0<x<2時,y∴選項C正確故選:C.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,熟練運用反比例函數(shù)與一次函數(shù)的性質(zhì)解決問題是本題的關(guān)鍵.7、A【詳解】∵正比例函數(shù)y=mx(m≠0),y隨x的增大而減小,∴該正比例函數(shù)圖象經(jīng)過第一、三象限,且m<0,∴二次函數(shù)y=mx2+m的圖象開口方向向下,且與y軸交于負半軸,綜上所述,符合題意的只有A選項,故選A.8、C【分析】根據(jù)題意得點P點P′關(guān)于原點的對稱,然后根據(jù)關(guān)于原點對稱的點的坐標特點即可得解.【詳解】∵P點坐標為(3,-2),∴P點的原點對稱點P′的坐標為(-3,2).故選C.【點睛】本題主要考查坐標與圖形變化-旋轉(zhuǎn),解此題的關(guān)鍵在于熟練掌握其知識點.9、C【解析】分析:作對的圓周角∠APC,如圖,利用圓內(nèi)接四邊形的性質(zhì)得到∠P=40°,然后根據(jù)圓周角定理求∠AOC的度數(shù).詳解:作對的圓周角∠APC,如圖,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故選:C.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.10、C【分析】先對原方程進行變形,然后進行判定即可.【詳解】解:由原方程可以化為:(2x-1)2=-n2-1∵(2x-1)2≥0,-n2-1≤-1∴原方程沒有實數(shù)根.故答案為C.【點睛】本題考查了一元二次方程的解,解題的關(guān)鍵在于對方程的變形,而不是運用根的判別式.二、填空題(每小題3分,共24分)11、()【分析】連接OB,過O作OH⊥BC于H,過O作ON⊥CD于N,根據(jù)已知條件求出OC和OB的長即可.【詳解】連接OB,過O作OH⊥BC于H,過O作ON⊥CD于N,∵∠COD=120°,CO=DO,∴∠OCD=∠ODC=30°,∵ON⊥CO,∴CN=DN=CD=AB=m,∴ON=CN=m,OC=1m,∵ON⊥BC,∴四邊形OHCN是矩形,∴CH=ON=m,OH=CN=m,∴BH=BC-CH=m,∴OB==m,∴在這一過程中,窗框上的點到地面的最大高度為(+1)m,故答案為:(+1).【點睛】本題考查了垂徑定理,矩形的性質(zhì)和判定,勾股定理,掌握知識點是解題關(guān)鍵.12、1【分析】根據(jù)一元二次方程的定義,從而列出關(guān)于m的關(guān)系式,求出答案.【詳解】根據(jù)題意可知:m+1≠0且|m|+1=2,解得:m=1,故答案為m=1.【點睛】本題主要考查了一元二次方程的定義,解本題的要點在于知道一元二次方程中二次項系數(shù)不能為0.13、C78【分析】根據(jù)轉(zhuǎn)一圈需要18分鐘,到第12分鐘時轉(zhuǎn)了圈,即可確定出座艙到達了哪個位置;再利用垂徑定理和特殊角的銳角三角函數(shù)求點離地面的高度即可.【詳解】∵轉(zhuǎn)一圈需要18分鐘,到第12分鐘時轉(zhuǎn)了圈∴乘坐的座艙到達圖2中的點C處如圖,連接BC,OC,OB,作OQ⊥BC于點E由圖2可知圓的半徑為44m,即∵OQ⊥BC∴∴∴∴點C距地面的高度為m故答案為C,78【點睛】本題主要考查解直角三角形,掌握垂徑定理及特殊角的銳角三角函數(shù)是解題的關(guān)鍵.14、±1【解析】方程利用平方根定義開方求出解即可.【詳解】∵x2=1∴x=±1.【點睛】本題考查直接開平方法解一元二次方程,解題關(guān)鍵是熟練掌握一元二次方程的解法.15、或;【分析】由題意可知關(guān)于x的不等式的解集實際上就是一次函數(shù)的值大于反比例函數(shù)的值時自變量x的取值范圍,由于反比例函數(shù)的圖象有兩個分支,因此可以分開來考慮.【詳解】解:關(guān)于x的不等式的解集實際上就是一次函數(shù)的值大于反比例函數(shù)的值時自變量x的取值范圍,觀察圖象的交點坐標可得:或.【點睛】本題考查一次函數(shù)的圖象和性質(zhì)、反比例函數(shù)的圖象和性質(zhì)以及一次函數(shù)、反比例函數(shù)與一次不等式的關(guān)系,理解不等式與一次函數(shù)和反比例函數(shù)的關(guān)系式解決問題的關(guān)鍵.16、1【解析】試題解析:x2+2x-1=0,x2+2x=1,x2+2x+1=2,(x+1)2=2,則m=1;故答案為1.17、【分析】分別找出符號,分母,分子的規(guī)律,從而得出第n個分式的式子.【詳解】觀察發(fā)現(xiàn)符號規(guī)律為:正負間或出現(xiàn),故第n項的符號為:分母規(guī)律為:y的次序依次增加2、3、4等等,故第n項為:=分子規(guī)律為:x的次數(shù)為對應(yīng)項的平方加1,故第n項為:故答案為:.【點睛】本題考查找尋規(guī)律,需要注意,除了尋找數(shù)字規(guī)律外,我們還要尋找符號規(guī)律.18、【分析】直接利用概率公式求解即可求得答案.【詳解】∵一個不透明的口袋中裝有3個紅球和9個黃球,這些球除了顏色外無其他差別,

∴從中隨機摸出一個小球,恰好是紅球的概率為:.故答案為:.【點睛】本題考查了概率公式的應(yīng)用.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共66分)19、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【解析】(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據(jù)“A型公交車1輛,B型公交車2輛,共需400萬元;A型公交車2輛,B型公交車1輛,共需350萬元”列出方程組解決問題;(2)設(shè)購買A型公交車a輛,則B型公交車(10-a)輛,由“購買A型和B型公交車的總費用不超過1220萬元”和“10輛公交車在該線路的年均載客總和不少于650萬人次”列出不等式組探討得出答案即可.【詳解】(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得,解得,答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)設(shè)購買A型公交車a輛,則B型公交車(10﹣a)輛,由題意得,解得:,因為a是整數(shù),所以a=6,7,8;則(10﹣a)=4,3,2;三種方案:①購買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬元;②購買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬元;③購買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬元;購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【點睛】此題考查二元一次方程組和一元一次不等式組的應(yīng)用,注意理解題意,找出題目蘊含的數(shù)量關(guān)系,列出方程組或不等式組解決問題.20、(1)y1=﹣2,y2=;(2)x1=9,x2=﹣2;(3)x1=1+,x2=1﹣.【分析】(1)先變形為2y(y+2)﹣(y+2)=0,然后利用因式分解法解方程;(2)先計算出判別式的值,然后利用求根公式法解方程;(3)先把二次項系數(shù)化為1,再兩邊加上一次項系數(shù)一半的平方,配方法得到(x﹣1)2=,然后利用直接開平方法解方程.【詳解】解:(1)2y(y+2)﹣(y+2)=0,∴(y+2)(2y﹣1)=0,∴y+2=0或2y﹣1=0,所以y1=﹣2,y2=;(2)a=1,b=﹣7,c=﹣18,∴△=(﹣7)2﹣4×(﹣18)=121,∴x=,∴x1=9,x2=﹣2;(3)x2﹣2x=,∴x2﹣2x+1=+1,∴(x﹣1)2=,∴x﹣1=±,∴x1=1+,x2=1﹣.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.也考查了配方法和公式法.21、(1)k<(1)1【分析】(1)根據(jù)方程有兩個不相等的實數(shù)根,得到根的判別式的值大于0列出關(guān)于k的不等式,求出不等式的解集即可得到k的范圍.(1)找出k范圍中的整數(shù)解確定出k的值,經(jīng)檢驗即可得到滿足題意k的值.【詳解】解:(1)∵關(guān)于的一元二次方程有兩個不相等的實數(shù)根,∴.解得:k<.(1)∵k為k<的正整數(shù),∴k=1或1.當k=1時,方程為,兩根為,非整數(shù),不合題意;當k=1時,方程為,兩根為或,都是整數(shù),符合題意.∴k的值為1.22、(1),16;(2)-8<x<0或x>4;(3)點P的坐標為().【分析】(1)將點B代入y1=k1x+2和y2=,可求出k1=k2=16.(2)由圖象知,-8<x<0和x>4(3)先求出四邊形ODAC的面積,從而求出DE的長,然后得出點E的坐標,最后求出直線OP的解析式即可得出點P的坐標.【詳解】解:(1)把B(-8,-2)代入y1=k1x+2得-8k1+2=-2,解得k1=∴一次函數(shù)解析式為y1=x+2;把B(-8,-2)代入得k2=-8×(-2)=16,

∴反比例函數(shù)解析式為故答案為:,16;(2)∵當y1>y2時即直線在反比例函數(shù)圖象的上方時對應(yīng)的x的取值范圍,

∴-8<x<0或x>4;

故答案為:-8<x<0或x>4;(3)由(1)知y1=x+2,y2=,∴m=4,點C的坐標是(0,2),點A的坐標是(4,4),∴CO=2,AD=OD=4,∴S梯形ODAC=·OD=×4=12.∵S梯形ODAC∶S△ODE=3∶1,∴S△ODE=×S梯形ODAC=×12=4,即OD·DE=4,∴DE=2,∴點E的坐標為(4,2).又∵點E在直線OP上,∴直線OP的解析式是y=x,∴直線OP與反比例函數(shù)y2=的圖象在第一象限內(nèi)的交點P的坐標為(4,2).【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式,三角形、梯形的面積,根據(jù)圖象找出自變量的取值范圍.在解題時要綜合應(yīng)用反比例函數(shù)的圖象和性質(zhì)以及求一次函數(shù)與反比例函數(shù)交點坐標是本題的關(guān)鍵.23、米【分析】分別過點和作的垂線,垂足為和,設(shè)AD=x,根據(jù)坡度求出DQ,根據(jù)正切定義用x表示出PQ,再由等腰直角三角形的性質(zhì)列出x的方程,解之即可解答.【詳解】解:分別過點和作的垂線,垂足為和,設(shè)的長是米∵中,∴∵的坡比是1:1.1,水平長度11米∴∴在中,∴,即:∴答:的長是米【點睛】本題考查解直角三角形的應(yīng)用-仰角俯角問題、坡度坡角問題,掌握仰角俯角的概念、坡度坡角的概念、熟記銳角三角函數(shù)的定義是解答本題的關(guān)鍵.24、【分析】作交于點,則,,易得,根據(jù)光的反射規(guī)律易得,可得△CDE和三角形ABE均為等腰直角三角形,設(shè),則,,,在中有,代入求解即可.【詳解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論