版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第=page11頁,共=sectionpages11頁2023-2024學(xué)年廣西壯族自治區(qū)柳州市高一下學(xué)期期末質(zhì)量檢測數(shù)學(xué)試卷一、單選題:本題共8小題,每小題5分,共40分。在每小題給出的選項中,只有一項是符合題目要求的。1.某市市場監(jiān)管局為了了解飲料的質(zhì)量,從該市區(qū)某超市在售的50種飲料中抽取了30種飲料,對其質(zhì)量進行了檢查.在這個問題中,30是(
)A.總體 B.個體 C.樣本 D.樣本量2.矩形的直觀圖是(
)A.正方形 B.矩形 C.三角形 D.平行四邊形3.下列說法中正確的是(
)A.隨機事件發(fā)生的頻率就是這個隨機事件發(fā)生的概率
B.在n次隨機試驗中,一個隨機事件A發(fā)生的頻率具有確定性
C.隨著試驗次數(shù)n的增大,一個隨機事件A發(fā)生的頻率會逐漸穩(wěn)定于事件A發(fā)生的概率
D.在同一次試驗中,每個試驗結(jié)果出現(xiàn)的頻率之和不一定等于14.已知圓錐的側(cè)面展開圖是半徑為6,圓心角為2π3的扇形,則該圓錐的體積為(
)A.162π B.162π5.國家隊射擊運動員小王在某次訓(xùn)練中10次射擊成績(單位:環(huán))如下:6,5,9,6,4,8,9,8,7,5,則這組數(shù)據(jù)的第60百分位數(shù)為(
)A.6.5 B.7 C.7.5 D.86.歐拉恒等式eiπ+1=0(i為虛數(shù)單位,e為自然對數(shù)的底數(shù))被稱為數(shù)學(xué)中最奇妙的公式.它是復(fù)分析中歐拉公式eix=cosx+isinx的特例:當自變量x=π時,eA.第一象限 B.第二象限 C.第三象限 D.第四象限7.如圖,在△ABC中,AB=4DB,P為CD的中點,則BP=(
)
A.?14AB+12AC B.8.如圖,在正四面體ABCD中,點E是線段AD上靠近點D的四等分點,則異面直線EC與BD所成角的余弦值為(
)
A.31326 B.1313 二、多選題:本題共3小題,共15分。在每小題給出的選項中,有多項符合題目要求。9.已知復(fù)數(shù)z1,z2,則下列說法正確的是(
)A.若z1+z2是實數(shù),則z1與z2的虛部互為相反數(shù)
B.若z1=z2且z1≠z2,則z110.已知m,n是兩條不同的直線,α,β,γ是三個不同的平面,則下列說法正確的是(
)A.若m/?/α,α/?/β,則m/?/β
B.若m⊥n,m⊥α,n⊥β,則α⊥β
C.若α/?/β,β/?/γ,則α/?/γ
D.若α⊥β,α∩γ=m,β∩γ=n,則m⊥n11.口袋中裝有大小質(zhì)地完全相同的白球和黑球各2個,從中不放回的依次取出2個球,事件A?=“取出的兩球同色”,事件B=“第一次取出的是白球”,事件C=“第二次取出的是白球”,事件D=“取出的兩球不同色”,則(
)A.P(C)=13 B.A與B相互獨立
C.A與C相互獨立 三、填空題:本題共3小題,每小題5分,共15分。12.已知向量a與b的夾角為π3,|a|=1,|b|=2,則13.已知射擊運動員甲擊中靶心的概率為0.72,射擊運動員乙擊中靶心的概率為0.85,且甲、乙兩人是否擊中靶心互不影響.若甲、乙各射擊一次,則至少有一人擊中靶心的概率為
.14.某工廠需要制作一個如圖所示的模型,該模型為長方體ABCD??A′B′C′D′挖去一個四棱錐O?EFGH后所得的幾何體,其中O為長方體ABCD?A′B′C′D′的中心,E,F(xiàn),G,H分別為所在棱的中點,AB=BC=8,AA′=6,那么該模型的表面積為
.
四、解答題:本題共5小題,共60分。解答應(yīng)寫出文字說明,證明過程或演算步驟。15.(本小題12分)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,(sin(1)求A;(2)若b=2,a=3,請判斷△ABC16.(本小題12分)
團建的目的是增強團隊凝聚力和團隊融合度,提高團隊間熟悉感和協(xié)助能力,在緊張的工作中放松,能夠更好地完成日常工作.某文化傳媒公司團建活動是投籃比賽,其中10名員工的投中個數(shù)(每人投10個球)統(tǒng)計表如下:編號12345678910投中個數(shù)79898107769(1)求這10名員工在本次投籃比賽中投中個數(shù)的平均數(shù)和方差;(2)從投進9個球和10個球的員工中選2人分享活動感受,求這2人恰好都是投進9個球的員工的概率.17.(本小題12分)
如圖,在正方體ABCD?A1B1C1D1中,E,F(xiàn)(1)求證:D(2)求證:平面BED1//平面18.(本小題12分)
如圖,在梯形ABCD中,AB/?/CD,AB=2CD,E,F(xiàn)分別為AB,CE的中點,G是線段BC上的動點.
(1)若CG=13CB,求證:A,F(xiàn)(2)若AD=CD=1,∠DAB=π3,求AG19.(本小題12分)
如圖1,在四邊形ABCD中,AB/?/CD,AB=1,∠A=60°,BD=CD,∠ABD=90°,將△ABD沿邊BD翻折至△PBD,使得平面PBD⊥平面BCD,如圖2所示.E是線段PD上的一點,且(1)求證:平面BEC⊥平面PCD;(2)求直線BE與平面PBC所成角的正弦值.
參考答案1.D
2.D
3.C
4.B
5.C
6.B
7.C
8.A
9.AB
10.BC
11.BCD
12.713.0.958
14.288+815.解:(1)因為(sinC?sinA)(c+a)=b(sinC?sinB),
所以由正弦定理得(c?a)(c+a)=b(c?b),
則b2+c2?a2=bc,
由余弦定理得cosA=b2+c2?a22bc=12,
又0<A<π,16.解:(1)依題意,這10名員工在本次投籃比賽中投中個數(shù)的平均數(shù)為110×(6+3×7+2×8+3×9+10)=8,
方差為s2=110×(12+12+02+12+02+22+12+12+22+12)=1.4;
(2)依題意,這10名員工投中10個球的有1人,編號為6,
投中9個球的有3人,編號為2,4,10,
從中任選2人,有17.證明:(1)因為四邊形ABCD是正方形,所以BD⊥AC.
在正方體ABCD?A1B1C1D1中,DD1⊥平面ABCD,又AC?平面ABCD,
所以DD1⊥AC,
又DD1∩DB=D,DD1,DB?平面DBB1D1,
所以AC⊥平面DBB1D1,又D1B?平面DBB1D1,
所以D1B⊥AC;
(2)連接BD,交AC于點O,連接FO,如圖所示.
因為四邊形ABCD是正方形,所以O(shè)是BD的中點,
又F是棱DD1的中點,所以FO//D1B,
又FO?平面ACF,D1B?平面ACF,所以D1B//平面ACF,
在正方體ABCD?A1B1C1D118.(1)證明:由題意知AG=BG?BA=23BC?BA,
AF=BF?BA=12(BC+BE)?BA
=12BC+12BE?BA
=12BC+14BA?BA=12BC?34BA,
所以AG=43AF,
又AG與AF有共同起點A,
19.(1)證明:因為平面PBD⊥平面BCD,平面PBD∩平面BCD=BD,且CD?平面BCD,CD⊥BD,
所以CD⊥平面PBD,
又BE?平面PBD,所以BE⊥CD,
又BE⊥PD,PD∩CD=D,且PD,CD?平面PCD,
所以BE⊥平面PCD,
又BE?平面BEC,所以平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度海洋資源開發(fā)與保護合作協(xié)議5篇
- 設(shè)計院在醫(yī)療領(lǐng)域的科技創(chuàng)新實踐
- 2025版無產(chǎn)權(quán)儲藏室買賣及售后服務(wù)保障協(xié)議3篇
- 2025年度個人設(shè)備抵押貸款業(yè)務(wù)合同
- 未來教育趨勢下的學(xué)生心理素質(zhì)培養(yǎng)方向
- 2025年度個人網(wǎng)絡(luò)借貸平臺合作協(xié)議書4篇
- 二零二五年度車牌租賃代理服務(wù)合作協(xié)議4篇
- 二零二五年度車位使用權(quán)及物業(yè)管理服務(wù)轉(zhuǎn)讓協(xié)議3篇
- 二零二五年度蟲草市場推廣與銷售支持合同2篇
- 2025年度文化旅游資源承包轉(zhuǎn)讓合同范本3篇
- 人教版四年級上冊加減乘除四則混合運算300題及答案
- 時間的重要性英文版
- 2024老舊小區(qū)停車設(shè)施改造案例
- 合成生物學(xué)技術(shù)在生物制藥中的應(yīng)用
- 消化系統(tǒng)疾病的負性情緒與心理護理
- 高考語文文學(xué)類閱讀分類訓(xùn)練:戲劇類(含答案)
- 協(xié)會監(jiān)事會工作報告大全(12篇)
- 灰壩施工組織設(shè)計
- WS-T 813-2023 手術(shù)部位標識標準
- 同意更改小孩名字協(xié)議書
- 隱患排查治理資金使用專項制度
評論
0/150
提交評論