2025屆安徽省淮北市杜集區(qū)數(shù)學九上期末監(jiān)測試題含解析_第1頁
2025屆安徽省淮北市杜集區(qū)數(shù)學九上期末監(jiān)測試題含解析_第2頁
2025屆安徽省淮北市杜集區(qū)數(shù)學九上期末監(jiān)測試題含解析_第3頁
2025屆安徽省淮北市杜集區(qū)數(shù)學九上期末監(jiān)測試題含解析_第4頁
2025屆安徽省淮北市杜集區(qū)數(shù)學九上期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省淮北市杜集區(qū)數(shù)學九上期末監(jiān)測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.向上發(fā)射一枚炮彈,經(jīng)秒后的高度為,且時間與高度的關系式為,若此時炮彈在第秒與第秒時的高度相等,則在下列哪一個時間的高度是最高的()A.第秒 B.第秒 C.第秒 D.第秒2.設點和是反比例函數(shù)圖象上的兩個點,當<<時,<,則一次函數(shù)的圖象不經(jīng)過的象限是A.第一象限 B.第二象限 C.第三象限 D.第四象限3.一個等腰梯形的兩底之差為12,高為6,則等腰梯形的銳角為()A.30° B.45° C.60° D.75°4.將拋物線向右平移個單位后,得到的拋物線的解析式是()A. B. C. D.5.一元二次方程x2﹣2x+3=0的一次項和常數(shù)項分別是()A.2和3 B.﹣2和3 C.﹣2x和3 D.2x和36.已知二次函數(shù)的圖象如圖所示,有下列結論:①;②;③;④⑤;其中正確結論的個數(shù)是()A. B. C. D.7.若點在反比例函數(shù)的圖象上,且,則下列各式正確的是()A. B. C. D.8.“學雷鋒”活動月中,“飛翼”班將組織學生開展志愿者服務活動,小晴和小霞從“圖書館,博物館,科技館”三個場館中隨機選擇一個參加活動,兩人恰好選擇同一場館的概率是()A. B. C. D.9.若點,在拋物線上,則下列結論正確的是()A. B. C. D.10.下列四個圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,點P在函數(shù)y=的圖象上,PA⊥x軸于點A,PB⊥y軸于點B,且△APB的面積為4,則k等于_____.12.某學校的初三(1)班,有男生20人,女生23人.現(xiàn)隨機抽一名學生,則:抽到一名男生的概率是_____.13.如圖,一人口的弧形臺階,從上往下看是一組同心圓被一條直線所截得的一組圓?。阎總€臺階寬度為32cm(即相鄰兩弧半徑相差32cm),測得AB=200cm,AC=BD=40cm,則弧AB所在的圓的半徑為_______________cm14.已知扇形的圓心角為120°,弧長為4π,則扇形的面積是___.15.如圖,在直角三角形中,,是邊上一點,以為邊,在上方作等腰直角三角形,使得,連接.若,,則的最小值是_______.16.小慧準備給媽媽打個電話,但她只記得號碼的前位,后三位由,,這三個數(shù)字組成,具體順序忘記了,則她第一次試撥就撥通電話的概率是________.17.如圖,已知A(,y1),B(2,y2)為反比例函數(shù)y=圖象上的兩點,動點P(x,0)在x軸正半軸上運動,當線段AP與線段BP之差達到最大時,點P的坐標是_____.18.拋物線的頂點坐標是___________.三、解答題(共66分)19.(10分)如圖,在正方形網(wǎng)格上有以及一條線段.請你以為一條邊.以正方形網(wǎng)格的格點為頂點畫一個,使得與相似,并求出這兩個三角形的相似比.20.(6分)如圖,在?ABCD中,AB=4,BC=8,∠ABC=60°.點P是邊BC上一動點,作△PAB的外接圓⊙O交BD于E.(1)如圖1,當PB=3時,求PA的長以及⊙O的半徑;(2)如圖2,當∠APB=2∠PBE時,求證:AE平分∠PAD;(3)當AE與△ABD的某一條邊垂直時,求所有滿足條件的⊙O的半徑.21.(6分)如圖,點在以線段為直徑的圓上,且,點在上,且于點,是線段的中點,連接、.(1)若,,求的長;(2)求證:.22.(8分)△ABC在平面直角坐標系中如圖:(1)畫出將△ABC繞點O逆時針旋轉90°所得到的,并寫出點的坐標.(2)畫出將△ABC關于x軸對稱的,并寫出點的坐標.(3)求在旋轉過程中線段OA掃過的圖形的面積.23.(8分)如圖,四邊形ABCD內接于⊙O,AB是直徑,C為的中點,延長AD,BC交于點P,連結AC.(1)求證:AB=AP;(2)若AB=10,DP=2,①求線段CP的長;②過點D作DE⊥AB于點E,交AC于點F,求△ADF的面積.24.(8分)如圖,在△ABC中,點D在BC邊上,BC=3CD,分別過點B,D作AD,AB的平行線,并交于點E,且ED交AC于點F,AD=3DF.(1)求證:△CFD∽△CAB;(2)求證:四邊形ABED為菱形;(3)若DF=,BC=9,求四邊形ABED的面積.25.(10分)一個二次函數(shù)的圖象經(jīng)過(3,1),(0,-2),(-2,6)三點.求這個二次函數(shù)的解析式并寫出圖象的頂點.26.(10分)如圖,點在軸正半軸上,點是反比例函數(shù)圖象上的一點,且.過點作軸交反比例函數(shù)圖象于點.(1)求反比例函數(shù)的表達式;(2)求點的坐標.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】二次函數(shù)是一個軸對稱圖形,到對稱軸距離相等的兩個點所表示的函數(shù)值也是一樣的.【詳解】根據(jù)題意可得:函數(shù)的對稱軸為直線x=,即當x=10時函數(shù)達到最大值.故選B.【點睛】本題主要考查的是二次函數(shù)的對稱性,屬于中等難度題型.理解“如果兩個點到對稱軸距離相等,則所對應的函數(shù)值也相等”是解決這個問題的關鍵.2、A【解析】∵點和是反比例函數(shù)圖象上的兩個點,當<<1時,<,即y隨x增大而增大,∴根據(jù)反比例函數(shù)圖象與系數(shù)的關系:當時函數(shù)圖象的每一支上,y隨x的增大而減??;當時,函數(shù)圖象的每一支上,y隨x的增大而增大.故k<1.∴根據(jù)一次函數(shù)圖象與系數(shù)的關系:一次函數(shù)的圖象有四種情況:①當,時,函數(shù)的圖象經(jīng)過第一、二、三象限;②當,時,函數(shù)的圖象經(jīng)過第一、三、四象限;③當,時,函數(shù)的圖象經(jīng)過第一、二、四象限;④當,時,函數(shù)的圖象經(jīng)過第二、三、四象限.因此,一次函數(shù)的,,故它的圖象經(jīng)過第二、三、四象限,不經(jīng)過第一象限.故選A.3、B【解析】作梯形的兩條高線,證明△ABE≌△DCF,則有BE=FC,然后判斷△ABE為等腰直角三角形求解.【詳解】如圖,作AE⊥BC、DF⊥BC,四邊形ABCD為等腰梯形,AD∥BC,BC?AD=12,AE=6,∵四邊形ABCD為等腰梯形,∴AB=DC,∠B=∠C,∵AD∥BC,AE⊥BC,DF⊥BC,∴AEFD為矩形,∴AE=DF,AD=EF,∴△ABE≌△DCF,∴BE=FC,∴BC?AD=BC?EF=2BE=12,∴BE=6,∵AE=6,∴△ABE為等腰直角三角形,∴∠B=∠C=45°.故選B.【點睛】此題考查等腰梯形的性質,解題關鍵在于畫出圖形.4、B【分析】原拋物線的頂點坐標(0,0),再把點(0,0)向右平移3個單位長度得點(0,3),然后根據(jù)頂點式寫出平移后的拋物線解析式.【詳解】解:將拋物線向右平移個單位后,得到的拋物線的解析式.故選:B【點睛】本題考查的是拋物線的平移.拋物線的平移可根據(jù)平移規(guī)律來寫,也可以移動頂點坐標,根據(jù)平移后的頂點坐標代入頂點式,即可求解.5、C【分析】根據(jù)一元二次方程一次項和常數(shù)項的概念即可得出答案.【詳解】一元二次方程x2﹣2x+3=0的一次項是﹣2x,常數(shù)項是3故選:C.【點睛】本題主要考查一元二次方程的一次項與常數(shù)項,注意在求一元二次方程的二次項,一次項,常數(shù)項時,需要先把一元二次方程化成一般形式.6、B【分析】利用特殊值法求①和③,根據(jù)圖像判斷出a、b和c的值判斷②和④,再根據(jù)對稱軸求出a和b的關系,再用特殊值法判斷⑤,即可得出答案.【詳解】令x=-1,則y=a-b+c,根據(jù)圖像可得,當x=-1時,y<0,所以a-b+c<0,故①錯誤;由圖可得,a>0,b<0,c<0,所以abc>0,a-c>0,故②④正確;令x=-2,則y=4a-2b+c,根據(jù)圖像可得,當x=-2時,y>0,所以4a-2b+c>0,故③正確;,所以-b=2a,∴a-b+c=a+2a+c=3a+c<0,故⑤錯誤;故答案選擇B.【點睛】本題考查的是二次函數(shù),難度偏高,需要熟練掌握二次函數(shù)的圖像與性質.7、C【分析】先判斷反比例函數(shù)所在象限,再根據(jù)反比例函數(shù)的性質解答即可.【詳解】解:反比例函數(shù)為,函數(shù)圖象在第二、四象限,在每個象限內,隨著的增大而增大,又,,,.故選C.【點睛】本題考查了反比例函數(shù)的圖象和性質,屬于基本題型,熟練掌握反比例函數(shù)的性質是解答的關鍵.8、A【分析】畫樹狀圖(用、、分別表示“圖書館、博物館、科技館”三個場館)展示所有9種等可能的結果數(shù),找出兩人恰好選擇同一場館的結果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:(用分別表示“圖書館,博物館,科技館”三個場館)共有9種等可能的結果數(shù),其中兩人恰好選擇同一場館的結果數(shù)為3,所以兩人恰好選擇同一場館的概率.故選A.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果,再從中選出符合事件或的結果數(shù)目,然后利用概率公式計算事件或事件的概率.9、A【分析】將x=0和x=1代入表達式分別求y1,y2,根據(jù)計算結果作比較.【詳解】當x=0時,y1=-1+3=2,當x=1時,y2=-4+3=-1,∴.故選:A.【點睛】本題考查二次函數(shù)圖象性質,對圖象的理解是解答此題的關鍵.10、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;D、既是軸對稱圖形,又是中心對稱圖形,故此選項正確.故選D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.二、填空題(每小題3分,共24分)11、-1【解析】由反比例函數(shù)系數(shù)k的幾何意義結合△APB的面積為4即可得出k=±1,再根據(jù)反比例函數(shù)在第二象限有圖象即可得出k=﹣1,此題得解.【詳解】∵點P在反比例函數(shù)y=的圖象上,PA⊥x軸于點A,PB⊥y軸于點B,∴S△APB=|k|=4,∴k=±1.又∵反比例函數(shù)在第二象限有圖象,∴k=﹣1.故答案為﹣1.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,熟練掌握“在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|是解題的關鍵.12、【分析】隨機抽取一名學生總共有20+23=43種情況,其中是男生的有20種情況.利用概率公式進行求解即可.【詳解】解:一共有20+23=43人,即共有43種情況,∴抽到一名男生的概率是.【點睛】本題考查了用列舉法求概率,屬于簡單題,熟悉概率的計算公式是解題關鍵.13、1【分析】由于所有的環(huán)形是同心圓,畫出同心圓圓心,設弧AB所在的圓的半徑為r,利用勾股定理列出方程即可解答.【詳解】解:設弧AB所在的圓的半徑為r,如圖.作OE⊥AB于E,連接OA,OC,則OA=r,OC=r+32,∵OE⊥AB,

∴AE=EB=100cm,在RT△OAE中,在RT△OCE中,,則解得:r=1.故答案為:1.【點睛】本題考查垂徑定理等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.14、12π.【分析】利用弧長公式即可求扇形的半徑,進而利用扇形的面積公式即可求得扇形的面積.【詳解】設扇形的半徑為r.則=4π,解得r=6,∴扇形的面積==12π,故答案為12π.【點睛】本題考查了扇形面積求法,用到的知識點為:扇形的弧長公式l=,扇形的面積公式S=,解題的關鍵是熟記這兩個公式.15、【分析】過點E作EH⊥直線AC于點H,利用AAS定理證明△BCD≌△DEH,設CD=x,利用勾股定理求,然后利用配方法求其最小值,從而使問題得解.【詳解】解:過點E作EH⊥直線AC于點H,由題意可知:∠EDA+∠BDC=90°,∠BDC+∠DBC=90°∴∠EDA=∠DBC又∵∠C=∠EHD,BD=DE∴△BCD≌△DEH∴HD=BC=4設CD=x,則EH=xAH=∴在Rt△AEH中,當x=時,有最小值為∴AE的最小值為故答案為:【點睛】本題考查全等三角形的判定,勾股定理及二次函數(shù)求最值,綜合性較強,正確添加輔助線是本題的解題關鍵.16、【解析】首先根據(jù)題意可得:可能的結果有:512,521,152,125,251,215;然后利用概率公式求解即可求得答案.【詳解】∵她只記得號碼的前5位,后三位由5,1,2,這三個數(shù)字組成,∴可能的結果有:512,521,152,125,251,215;∴他第一次就撥通電話的概率是:故答案為.【點睛】考查概率的求法,明確概率的意義是解題的關鍵,概率等于所求情況數(shù)與總情況數(shù)的之比.17、【解析】試題解析:∵把A(,y1),B(2,y2)代入反比例函數(shù)y=得:y1=2,y2=,∴A(,2),B(2,).在△ABP中,由三角形的三邊關系定理得:|AP-BP|<AB,∴延長AB交x軸于P′,當P在P′點時,PA-PB=AB,即此時線段AP與線段BP之差達到最大,設直線AB的解析式是y=ax+b(a≠0)把A、B的坐標代入得:,解得:,∴直線AB的解析式是y=-x+,當y=0時,x=,即P(,0);故答案為(,0).18、(1,﹣4).【解析】解:∵原拋物線可化為:y=(x﹣1)2﹣4,∴其頂點坐標為(1,﹣4).故答案為(1,﹣4).三、解答題(共66分)19、圖見解析,與的相似比是.【分析】可先選定BC與DE為對應邊,對應邊之比為1:2,據(jù)此來選定點F的位置,相似比亦可得.【詳解】解:如圖,與相似.理由如下:由勾股定理可求得,,BC=2,;,DE=4,,∴,∴∽,相似比是.【點睛】此題主要考查了相似三角形的判定與性質,利用網(wǎng)格得出三角形各邊長度是解題關鍵.20、(1)PA的長為,⊙O的半徑為;(2)見解析;(3)⊙O的半徑為2或或【分析】(1)過點A作BP的垂線,作直徑AM,先在Rt△ABH中求出BH,AH的長,再在Rt△AHP中用勾股定理求出AP的長,在Rt△AMP中通過銳角三角函數(shù)求出直徑AM的長,即求出半徑的值;(2)證∠APB=∠PAD=2∠PAE,即可推出結論;(3)分三種情況:當AE⊥BD時,AB是⊙O的直徑,可直接求出半徑;當AE⊥AD時,連接OB,OE,延長AE交BC于F,通過證△BFE∽△DAE,求出BE的長,再證△OBE是等邊三角形,即得到半徑的值;當AE⊥AB時,過點D作BC的垂線,通過證△BPE∽△BND,求出PE,AE的長,再利用勾股定理求出直徑BE的長,即可得到半徑的值.【詳解】(1)如圖1,過點A作BP的垂線,垂足為H,作直徑AM,連接MP,在Rt△ABH中,∠ABH=60°,∴∠BAH=30°,∴BH=AB=2,AH=AB?sin60°=2,∴HP=BP﹣BH=1,∴在Rt△AHP中,AP==,∵AB是直徑,∴∠APM=90°,在Rt△AMP中,∠M=∠ABP=60°,∴AM===,∴⊙O的半徑為,即PA的長為,⊙O的半徑為;(2)當∠APB=2∠PBE時,∵∠PBE=∠PAE,∴∠APB=2∠PAE,在平行四邊形ABCD中,AD∥BC,∴∠APB=∠PAD,∴∠PAD=2∠PAE,∴∠PAE=∠DAE,∴AE平分∠PAD;(3)①如圖3﹣1,當AE⊥BD時,∠AEB=90°,∴AB是⊙O的直徑,∴r=AB=2;②如圖3﹣2,當AE⊥AD時,連接OB,OE,延長AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴=,在Rt△ABF中,∠ABF=60°,∴AF=AB?sin60°=2,BF=AB=2,∴=,∴EF=,在Rt△BFE中,BE===,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等邊三角形,∴r=;③當AE⊥AB時,∠BAE=90°,∴AE為⊙O的直徑,∴∠BPE=90°,如圖3﹣3,過點D作BC的垂線,交BC的延長線于點N,延開PE交AD于點Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC?sin60°=2,CN=CD=2,∴PQ=DN=2,設QE=x,則PE=2﹣x,在Rt△AEQ中,∠QAE=∠BAD﹣BAE=30°,∴AE=2QE=2x,∵PE∥DN,∴△BPE∽△BND,∴=,∴=,∴BP=10﹣x,在Rt△ABE與Rt△BPE中,AB2+AE2=BP2+PE2,∴16+4x2=(10﹣x)2+(2﹣x)2,解得,x1=6(舍),x2=,∴AE=2,∴BE===2,∴r=,∴⊙O的半徑為2或或.【點睛】此題主要考查圓與幾何綜合,解題的關鍵是熟知圓的基本性質、勾股定理及相似三角形的判定與性質.21、(1)5;(2)見解析【分析】(1)利用圓周角定理和圓心角、弧、弦的關系得到∠ACB=90°,且AC=BC,則∠A=45°,再證明△ADE為等腰直角三角形,所以AE=DE=6,接著利用勾股定理計算出BC,然后根據(jù)直角三角形斜邊上的中線性質得到EF的長;(2)如圖,連接CF,利用圓周角定理得到∠BED=∠AED=∠ACB=90°,再根據(jù)直角三角形斜邊上的中線性質得CF=EF=FB=FD,利用圓的定義可判斷B、C、D、E在以BD為直徑的圓上,根據(jù)圓周角定理得到∠EFC=2∠EBC=90°,然后利用△EFC為等腰直角三角形得到.【詳解】解:(1)∵點在以線段為直徑的圓上,且∴,且∵,,,∴,在中,∵,,∴,又∵是線段的中點,∴;(2)如圖,連接,線段與之間的數(shù)量關系是;∵,∵點是的中點,∴,∵,,∴,同理,∴,即,∴;【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了等腰直角三角形的判定與性質.22、(1)(-3,2);(2)(2,-3);(3)S=【分析】(1)根據(jù)題意利用旋轉作圖的方法畫出將△ABC繞點O逆時針旋轉90°所得到的以及寫出點的坐標即可;(2)根據(jù)題意利用作軸對稱圖形的方法畫出將△ABC關于x軸對稱的并寫出點的坐標即可;(3)由題意可知OA掃過的圖形是一個以OA長為半徑的四分之一的圓,求出這個四分之一的圓即可求出線段OA掃過的圖形的面積.【詳解】解:(1)如圖:由圖像可得的坐標為(-3,2);(2)如圖:由圖像可得的坐標為(2,-3);(3)由題意可知OA掃過的圖形是一個以OA長為半徑的四分之一的圓,已知A(2,3),利用勾股定理求得OA=,所以線段OA掃過的圖形的面積為:=.【點睛】本題考查旋轉作圖和作軸對稱圖形,熟練掌握并利用旋轉作圖和作軸對稱圖形的方法和技巧是解題的關鍵.23、(1)見解析;(2)①PC=;②S△ADF=.【分析】(1)利用等角對等邊證明即可;(2)①利用勾股定理分別求出BD,PB,再利用等腰三角形的性質即可解決問題;②作FH⊥AD于H,首先利用相似三角形的性質求出AE,DE,再證明AE=AH,設FH=EF=x,利用勾股定理構建方程解決問題即可.【詳解】(1)證明:∵=,∴∠BAC=∠CAP,∵AB是直徑,∴∠ACB=∠ACP=90°,∵∠ABC+∠BAC=90°,∠P+∠CAP=90°,∴∠ABC=∠P,∴AB=AP.(2)①解:連接BD.∵AB是直徑,∴∠ADB=∠BDP=90°,∵AB=AP=10,DP=2,∴AD=10﹣2=8,∴BD===6,∴PB===2,∵AB=AP,AC⊥BP,∴BC=PC=PB=,∴PC=.②解:作FH⊥AD于H.∵DE⊥AB,∴∠AED=∠ADB=90°,∵∠DAE=∠BAD,∴△ADE∽△ABD,∴==,∴==,∴AE=,DE=,∵∠FEA=∠FEH,F(xiàn)E⊥AE,F(xiàn)H⊥AH,∴FH=FE,∠AEF=∠AHF=90°,∵AF=AF,∴Rt△AFE≌Rt△AFH(HL),∴AH=AE=,DH=AD﹣AH=,設FH=EF=x,在Rt△FHD中,則有(﹣x)2=x2+()2,解得x=,∴S△ADF=?AD?FH=×8×=.故答案為①PC=;②S△ADF=.【點睛】本題考查了圓周角定理,等腰三角形的判定與性質,解直角三角形,相似三角形的判定與性質等知識.屬于圓的綜合題,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.24、(1)見解析;(2)見解析;(3)四邊形ABED的面積為1.【分析】(1)由平行線的性質和公共角即可得出結論;(2)先證明四邊形ABED是平行四邊形,再證出AD=AB,即可得出四邊形ABED為菱形;(3)連接AE交BD于O,由菱形的性質得出BD⊥AE,OB=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論