




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.擲一枚質地均勻的硬幣6次,下列說法正確的是()A.必有3次正面朝上 B.可能有3次正面朝上C.至少有1次正面朝上 D.不可能有6次正面朝上2.一元二次方程x2﹣16=0的根是(
)A.x=2
B.x=4
C.x1=2,x2=﹣2
D.x1=4,x2=﹣43.下列圖形都是由同樣大小的五角星按一定的規(guī)律組成,其中第①個圖形一共有2個五角星,第②個圖形一共有8個五角星,第③個圖形一共有18個五角星,…,則第⑦個圖形中五角星的個數為()A.90 B.94 C.98 D.1024.用配方法解方程x2+6x+4=0,下列變形正確的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±5.如圖,點在線段上,在的同側作角的直角三角形和角的直角三角形,與,分別交于點,,連接.對于下列結論:①;②;③圖中有5對相似三角形;④.其中結論正確的個數是()A.1個 B.2個 C.4個 D.3個6.方程的根是()A.5和 B.2和 C.8和 D.3和7.如果某人沿坡度為的斜坡前進10m,那么他所在的位置比原來的位置升高了()A.6m B.8m C.10m D.12m8.在下列四種圖形變換中,如圖圖案包含的變換是()A.平移、旋轉和軸對稱 B.軸對稱和平移C.平移和旋轉 D.旋轉和軸對稱9.一個小組有若干人,新年互送賀年卡一張,已知全組共送賀年卡72張,則這個小組有()A.12人 B.18人 C.9人 D.10人10.如圖,晚上小亮在路燈下散步,在小亮由A處徑直走到B處這一過程中,他在地上的影子()A.逐漸變短 B.先變短后變長C.先變長后變短 D.逐漸變長11.如圖,平行于BC的直線DE把△ABC分成的兩部分面積相等,則為()A. B. C. D.12.三角形兩邊長分別是和,第三邊長是一元二次方程的一個實數根,則該三角形的面積是()A. B. C.或 D.或二、填空題(每題4分,共24分)13.方程的根是____.14.若點,在反比例函數的圖象上,則______.(填“>”“<”或“=”)15.年月日我國自主研發(fā)的大型飛機成功首飛,如圖給出了一種機翼的示意圖,其中,,則的長為_______.16.在中,,,,則內切圓的半徑是__________.17.在△ABC和△A'B'C'中,===,△ABC的周長是20cm,則△A'B'C的周長是_____.18.拋物線的頂點為,已知一次函數的圖象經過點,則這個一次函數圖象與兩坐標軸所圍成的三角形面積為__________.三、解答題(共78分)19.(8分)圖1是一輛登高云梯消防車的實物圖,圖2是其工作示意圖,起重臂AC是可伸縮的,其轉動點A距離地面BD的高度AE為3.5m.當AC長度為9m,張角∠CAE為112°時,求云梯消防車最高點C距離地面的高度CF.(結果精確到0.1m,參考數據:sin22°≈0.37,cos22°≈0.93,tan22°≈0.1.)20.(8分)如圖,大圓的弦AB、AC分別切小圓于點M、N.(1)求證:AB=AC;(2)若AB=8,求圓環(huán)的面積.21.(8分)如圖所示,是某路燈在鉛垂面內的示意圖,燈柱的高為10米,燈柱與燈桿的夾角為.路燈采用錐形燈罩,在地面上的照射區(qū)域的長為13.3米,從,兩處測得路燈的仰角分別為和,且.求燈桿的長度.22.(10分)(問題呈現)阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,點M是的中點,則從M向BC所作垂線的垂足D是折弦ABC的中點,即CD=DB+BA.下面是運用“截長法”證明CD=DB+BA的部分證明過程.證明:如圖2,在CD上截取CG=AB,連接MA、MB、MC和MG.∵M是的中點,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根據證明過程,分別寫出下列步驟的理由:①,②,③;(理解運用)如圖1,AB、BC是⊙O的兩條弦,AB=4,BC=6,點M是的中點,MD⊥BC于點D,則BD=;(變式探究)如圖3,若點M是的中點,(問題呈現)中的其他條件不變,判斷CD、DB、BA之間存在怎樣的數量關系?并加以證明.(實踐應用)根據你對阿基米德折弦定理的理解完成下列問題:如圖4,BC是⊙O的直徑,點A圓上一定點,點D圓上一動點,且滿足∠DAC=45°,若AB=6,⊙O的半徑為5,求AD長.23.(10分)甲、乙兩所醫(yī)院分別有一男一女共4名醫(yī)護人員支援湖北武漢抗擊疫情.(1)若從甲、乙兩醫(yī)院支援的醫(yī)護人員中分別隨機選1名,則所選的2名醫(yī)護人員性別相同的概率是;(2)若從支援的4名醫(yī)護人員中隨機選2名,用列表或畫樹狀圖的方法求出這2名醫(yī)護人員來自同一所醫(yī)院的概率.24.(10分)解下列兩題:(1)已知,求的值;(2)已知α為銳角,且2sinα=4cos30°﹣tan60°,求α的度數.25.(12分)已知拋物線y=x2+bx+c的圖像過A(﹣1,0)、B(3,0)兩點.求拋物線的解析式和頂點坐標.26.用適當的方法解下列方程:(1)4x2-1=0;(2)3x2+x-5=0;
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件,可得答案.【詳解】解:擲硬幣問題,正、反面朝上的次數屬于隨機事件,不是確定事件,故A,C,D錯誤.
故選:B.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.2、D【解析】本題考查了一元二次方程的解法,移項后即可得出答案.【詳解】解:16=x2,x=±1.故選:D【點睛】本題考查了一元二次方程的解法,熟悉掌握一元二次方程的解法是解決本題的關鍵.3、C【分析】根據前三個圖形可得到第n個圖形一共有個五角星,當n=7代入計算即可.【詳解】解:第①個圖形一共有個五角星;第②個圖形一共有個五角星;第③個圖形一共有個五角星;……第n個圖形一共有個五角星,所以第⑦個圖形一共有個五角星.故答案選C.【點睛】本題主要考查規(guī)律探索,解題的關鍵是找準規(guī)律.4、C【解析】x2+6x+4=0,移項,得x2+6x=-4,配方,得x2+6x+32=-4+32,即(x+3)2=5.故選C.5、D【分析】如圖,設AC與PB的交點為N,根據直角三角形的性質得到,根據相似三角形的判定定理得到△BAE∽△CAD,故①正確;根據相似三角形的性質得到∠BEA=∠CDA,推出△PME∽△AMD,根據相似三角形的性質得到MP?MD=MA?ME,故②正確;由相似三角形的性質得到∠APM=∠DEM=90,根據垂直的定義得到AP⊥CD,故④正確;同理:△APN∽△BCN,△PNC∽△ANB,于是得到圖中相似三角形有6對,故③不正確.【詳解】如圖,設AC與PB的交點為N,∵∠ABC=∠AED=90,∠BAC=∠DAE=30,∴,∠BAE=30+∠CAE,∠CAD=30+∠CAE,∴∠BAE=∠CAD,∴△BAE∽△CAD,故①正確;∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴,∴MP?MD=MA?ME,故②正確;∴,∵∠PMA=∠EMD,∴△APM∽△DEM,∴∠APM=∠DEM=90,∴AP⊥CD,故④正確;同理:△APN∽△BCN,△PNC∽△ANB,∵△ABC∽△AED,∴圖中相似三角形有6對,故③不正確;故選:D.【點睛】本題考查了相似三角形的判定和性質,直角三角形的性質,正確的識別圖形是解題的關鍵.6、C【分析】利用直接開平方法解方程即可得答案.【詳解】(x-3)2=25,∴x-3=±5,∴x=8或x=-2,故選:C.【點睛】本題考查解一元二次方程,解一元二次方程的常用方法有:直接開平方法、配方法、公式法、因式分解法等,熟練掌握并靈活運用適當的方法是解題關鍵.7、A【解析】設斜坡的鉛直高度為3x,水平距離為4x,然后根據勾股定理求解即可.【詳解】設斜坡的鉛直高度為3x,水平距離為4x,由勾股定理得9x2+16x2=100,∴x=2,∴3x=6m.故選A.【點睛】此題主要考查坡度坡角及勾股定理的運用,需注意的是坡度是坡角的正切值,是鉛直高度h和水平寬l的比,我們把斜坡面與水平面的夾角叫做坡角,若用α表示坡角,可知坡度與坡角的關系是.8、D【分析】根據圖形的形狀沿中間的豎線折疊,兩部分可重合,里外各一個順時針旋轉8次,可得答案.【詳解】解:圖形的形狀沿中間的豎線折疊,兩部分可重合,得軸對稱.里外各一個順時針旋轉8次,得旋轉.故選:D.【點睛】本題考查了幾何變換的類型,平移是沿直線移動一定距離得到新圖形,旋轉是繞某個點旋轉一定角度得到新圖形,軸對稱是沿某條直線翻折得到新圖形.觀察時要緊扣圖形變換特點,認真判斷.9、C【解析】試題分析:設這個小組有人,故選C.考點:一元二次方程的應用.10、B【分析】小亮由A處徑直路燈下,他得影子由長變短,再從路燈下到B處,他的影子則由短變長.【詳解】晚上小亮在路燈下散步,在小亮由A處徑直走到B處這一過程中,他在地上的影子先變短,再變長.故選B.【點睛】本題考查了中心投影:由同一點(點光源)發(fā)出的光線形成的投影叫做中心投影.如物體在燈光的照射下形成的影子就是中心投影.11、D【分析】先證明△ADE∽△ABC,然后根據相似三角形的面積的比等于相似比的平方求解即可.【詳解】∵BC∥DE,∴△ADE∽△ABC,∵DE把△ABC分成的兩部分面積相等,∴△ADE:△ABC=1:2,∴.故選D.【點睛】本題主要考查了相似三角形的判定與性質,平行于三角形一邊的直線和其他兩邊或兩邊延長線相交,所構成的三角形與原三角形相似;相似三角形面積的比等于相似比的平方.12、D【分析】先利用因式分解法解方程得到所以,,再分類討論:當第三邊長為6時,如圖,在中,,,作,則,利用勾股定理計算出,接著計算三角形面積公式;當第三邊長為10時,利用勾股定理的逆定理可判斷此三角形為直角三角形,然后根據三角形面積公式計算三角形面積.【詳解】解:,或,所以,,I.當第三邊長為6時,如圖,在中,,,作,則,,所以該三角形的面積;II.當第三邊長為10時,由于,此三角形為直角三角形,所以該三角形的面積,綜上所述:該三角形的面積為24或.故選:D.【點睛】本題考查的是利用因式分解法解一元二次方程,等腰三角形的性質,勾股定理及其逆定理,解答此題時要注意分類討論,不要漏解.二、填空題(每題4分,共24分)13、,【分析】把方程變形為,把方程左邊因式分解得,則有y=0或y-5=0,然后解一元一次方程即可.【詳解】解:,∴,∴y=0或y-5=0,∴.故答案為:.【點睛】此題考查了解一元二次方程-因式分解法,其步驟為:移項,化積,轉化和求解這幾個步驟.14、<【分析】根據反比例的性質,比較大小【詳解】∵∴在每一象限內y隨x的增大而增大點,在第二象限內y隨x的增大而增大∴m<n故本題答案為:<【點睛】本題考查了通過反比例圖像的增減性判斷大小15、【分析】延長交于點,設于點,通過解直角三角形可求出、的長度,再利用即可求出結論.【詳解】延長交于點,設于點,如圖所示,在中,,,.在中,,,,,,,,故答案為:.【點睛】本題考查了解直角三角形的應用.通過解直角三角形求出、的長度是解題的關鍵.16、1【分析】先根據勾股定理求出斜邊AB的長,然后根據直角三角形內切圓的半徑公式:(其中a、b為直角三角形的直角邊、c為直角三角形的斜邊)計算即可.【詳解】解:在中,,,,根據勾股定理可得:∴內切圓的半徑是故答案為:1.【點睛】此題考查的是求直角三角形內切圓的半徑,掌握直角三角形內切圓的半徑公式:(其中a、b為直角三角形的直角邊、c為直角三角形的斜邊)是解決此題的關鍵.17、30cm.【分析】利用相似三角形的性質解決問題即可.【詳解】,的周長:的周長=2:3的周長為20cm,的周長為30cm,故答案為:30cm.【點睛】本題主要考查相似三角形的判定及性質,掌握相似三角形的判定及性質是解題的關鍵.18、1【分析】易得頂點(2,-6),根據待定系數法,求出一次函數解析式,進而求出直線與坐標軸的交點,根據三角形的面積公式,即可求解.【詳解】∵拋物線,∴頂點(2,-6),∵一次函數的圖象經過點,∴,解得:k=,∴一次函數解析式為:,∴直線與坐標軸的交點坐標分別是:(0,3),(,0),∴一次函數圖象與兩坐標軸所圍成的三角形面積=.故答案是:1.【點睛】本題主要考查二次函數和一次函數圖象與平面幾何的綜合,掌握一次函數圖象與坐標軸的交點坐標的求法,是解題的關鍵.三、解答題(共78分)19、CF≈6.8m.【分析】如圖,作AG⊥CF于點G,易得四邊形AEFG為矩形,則FG=AE=3.5m,∠EAG=90°,再計算出∠GAC=28°,則在Rt△ACG中利用正弦可計算出CG,然后計算CG+GF即可.【詳解】如圖,作AG⊥CF于點G,∵∠AEF=∠EFG=∠FGA=90°,∴四邊形AEFG為矩形,∴FG=AE=3.5m,∠EAG=90°,∴∠GAC=∠EAC﹣∠EAG=112°﹣90°=22°,在Rt△ACG中,sin∠CAG=,∴CG=AC?sin∠CAG=9sin22°≈9×0.37=3.33m,∴CF=CG+GF=3.33+3.5≈6.8m.【點睛】本題考查了解直角三角形的應用:先將實際問題抽象為數學問題(畫出平面圖形,構造出直角三角形轉化為解直角三角形問題),然后利用勾股定理和三角函數的定義進行幾何計算.20、(1)證明見解析;(2)S圓環(huán)=16π【解析】試題分析:(1)連結OM、ON、OA由切線長定理可得AM=AN,由垂徑定理可得AM=BM,AN=NC,從而可得AB=AC.(2)由垂徑定理可得AM=BM=4,由勾股定理得OA2-OM2=AM2=16,代入圓環(huán)的面積公式求解即可.(1)證明:連結OM、ON、OA∵AB、AC分別切小圓于點M、N.∴AM=AN,OM⊥AB,ON⊥AC,∴AM=BM,AN=NC,∴AB=AC(2)解:∵弦AB切與小圓⊙O相切于點M∴OM⊥AB∴AM=BM=4∴在Rt△AOM中,OA2-OM2=AM2=16∴S圓環(huán)=πOA2-πOM2=πAM2=16π21、2.8米【分析】過點作,交于點,過點作,交于點,則米.設.根據正切函數關系得,可進一步求解.【詳解】解:由題意得,.過點作,交于點,過點作,交于點,則米.設.,.在中,,.,..(米).,.(米).答:燈桿的長度為2.8米.【點睛】考核知識點:解直角三角形應用.構造直角三角形,利用直角三角形性質求解是關鍵.22、(問題呈現)相等的弧所對的弦相等;同弧所對的圓周角相等;有兩組邊及其夾角分別對應相等的兩個三角形全等;(理解運用)1;(變式探究)DB=CD+BA;證明見解析;(實踐應用)1或.【分析】(問題呈現)根據圓的性質即可求解;(理解運用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,即可求解;(變式探究)證明△MAB≌△MGB(SAS),則MA=MG,MC=MG,又DM⊥BC,則DC=DG,即可求解;(實踐應用)已知∠D1AC=45°,過點D1作D1G1⊥AC于點G1,則CG1′+AB=AG1,所以AG1=(6+2)=1.如圖∠D2AC=45°,同理易得AD2=.【詳解】(問題呈現)①相等的弧所對的弦相等②同弧所對的圓周角相等③有兩組邊及其夾角分別對應相等的兩個三角形全等故答案為:相等的弧所對的弦相等;同弧所定義的圓周角相等;有兩組邊及其夾角分別對應相等的兩個三角形全等;(理解運用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,BD=BC﹣CD=6﹣5=1,故答案為:1;(變式探究)DB=CD+BA.證明:在DB上截去BG=BA,連接MA、MB、MC、MG,∵M是弧AC的中點,∴AM=MC,∠MBA=∠MBG.又MB=MB∴△MAB≌△MGB(SAS)∴MA=MG∴MC=MG,又DM⊥BC,∴DC=DG,AB+DC=BG+DG,即DB=CD+BA;(實踐應用)如圖,BC是圓的直徑,所以∠BAC=90°.因為AB=6,圓的半徑為5,所以AC=2.已知∠D1AC=45°,過點D1作D1G1⊥AC于點G1,則CG1′+AB=AG1,所以AG1=(6+2)=1.所以AD1=1.如圖∠D2AC=45°,同理易得AD2=.所以AD的長為1或.【點睛】本題考查全等三角形的判定(SAS)與性質、等腰三角形的性質和圓心角、弦、弧,解題的關鍵是掌握全等三角形的判定(SAS)與性質、等腰三角形的性質和圓心角、弦、弧.23、(1);(2)【分析】(1)根據甲、乙兩所醫(yī)院分別有一男一女,列出樹狀圖,得出所有情況,再根據概率公式即可得出答案;(2)根據題意先畫出樹狀圖,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版聘請電影演員合同書
- 最高額委托擔保合同書
- 綜合能源站項目發(fā)展前景分析
- 增塑劑行業(yè)發(fā)展動態(tài)與市場前景展望
- 七年級信息技術上冊 第51課 編輯場景與動畫教學設計
- 上海2024年上海愛樂樂團工作人員招聘筆試歷年參考題庫附帶答案詳解
- 攝影知識及技巧培訓課件
- 消防安全課件大全
- 五年級道德與法治下冊 第一單元 我們一家人 第1課 讀懂彼此的教學設計 新人教版
- 推動研究生培養(yǎng)跨校協同的創(chuàng)新路徑與實踐策略
- 2025-2030中國5G基站建設情況及前景趨勢與投資研究報告
- 話題10 AI人工智能-2025年中考《英語》高頻熱點話題寫作通關攻略
- 2024年上海市工業(yè)技術學校招聘筆試真題
- 公路養(yǎng)護機械安全操作
- 2025年中國智能可穿戴設備市場深度調研分析及投資前景研究預測報告
- 體育產業(yè)智慧場館建設與運營模式創(chuàng)新
- 浙江國企招聘2024寧波慈溪市誠安燃氣服務有限公司招聘10人(二)筆試參考題庫附帶答案詳解
- 部隊網絡安全常識授課
- 員工職業(yè)晉升規(guī)劃計劃
- 倉庫人員安全教育培訓
- 尼康COOLPIXL120用戶手冊
評論
0/150
提交評論