高中數(shù)學(xué)第1講坐標(biāo)系第1課時(shí)平面直角坐標(biāo)系課件新人教A版選修4-4_第1頁(yè)
高中數(shù)學(xué)第1講坐標(biāo)系第1課時(shí)平面直角坐標(biāo)系課件新人教A版選修4-4_第2頁(yè)
高中數(shù)學(xué)第1講坐標(biāo)系第1課時(shí)平面直角坐標(biāo)系課件新人教A版選修4-4_第3頁(yè)
高中數(shù)學(xué)第1講坐標(biāo)系第1課時(shí)平面直角坐標(biāo)系課件新人教A版選修4-4_第4頁(yè)
高中數(shù)學(xué)第1講坐標(biāo)系第1課時(shí)平面直角坐標(biāo)系課件新人教A版選修4-4_第5頁(yè)
已閱讀5頁(yè),還剩32頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第1課時(shí)平面直角坐標(biāo)系1.平面直角坐標(biāo)系在平面內(nèi),兩條互相垂直的數(shù)軸構(gòu)成了____________________,一條稱(chēng)為_(kāi)_____,一條稱(chēng)為_(kāi)_____,交點(diǎn)O稱(chēng)為_(kāi)_________,如圖.平面直角坐標(biāo)系x軸y軸坐標(biāo)原點(diǎn)在平面直角坐標(biāo)系中,有序?qū)崝?shù)對(duì)構(gòu)成的集合與坐標(biāo)平面內(nèi)的點(diǎn)的集合具有一一對(duì)應(yīng)的關(guān)系.有序?qū)崝?shù)對(duì)(x,y)與點(diǎn)P相對(duì)應(yīng),________稱(chēng)作點(diǎn)P的坐標(biāo),記作P(x,y),其中x叫做點(diǎn)P的________,y叫做點(diǎn)P的________.(x,y)

橫坐標(biāo)縱坐標(biāo)2.坐標(biāo)法坐標(biāo)法是在坐標(biāo)系的基礎(chǔ)上,把幾何問(wèn)題轉(zhuǎn)化為_(kāi)_________,通過(guò)代數(shù)運(yùn)算研究幾何圖形性質(zhì)的方法,是解析幾何中最基本的研究方法.代數(shù)問(wèn)題1.點(diǎn)P(2,3)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)是(

)A.(2,3)

B.(-2,3)C.(2,-3)

D.(-2,-3)【答案】B【解析】關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的縱坐標(biāo)沒(méi)有發(fā)生變化,橫坐標(biāo)為原來(lái)的相反數(shù),故為(-2,3).【答案】C3.在直角坐標(biāo)系中,點(diǎn)A(2,-3)關(guān)于直線(xiàn)x-y-1=0對(duì)稱(chēng)的點(diǎn)是__________.【答案】(-2,1)4.△ABC中,若BC的長(zhǎng)度為4,中線(xiàn)AD的長(zhǎng)度為3,則點(diǎn)A的軌跡方程是什么?4.△ABC中,若BC的長(zhǎng)度為4,中線(xiàn)AD的長(zhǎng)度為3,則點(diǎn)A的軌跡方程是什么?【例1】某河上有拋物線(xiàn)形拱橋,當(dāng)水面距拱頂5m的時(shí)候,水面寬8m,一木船寬4m,高2m,問(wèn)水面漲到與拋物線(xiàn)拱頂相距多少米時(shí),木船開(kāi)始不能通航?【解題探究】可考慮建立平面直角坐標(biāo)系,求出所需拋物線(xiàn)的方程解決問(wèn)題.關(guān)鍵是要選擇合理的建系方式,使問(wèn)題簡(jiǎn)單化.建立平面直角坐標(biāo)系解決實(shí)際問(wèn)題【解析】以水平面與拱橋的截面的交線(xiàn)為x軸,拱頂?shù)剿矫娴拇咕€(xiàn)為y軸,該交線(xiàn)的中點(diǎn)為原點(diǎn)建立平面直角坐標(biāo)系,如圖,則A(-4,0),B(4,0),C(0,5).

本題利用坐標(biāo)解決實(shí)際問(wèn)題.也可以按照拋物線(xiàn)的標(biāo)準(zhǔn)位置,以點(diǎn)C為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,設(shè)方程為x2=-2py(p>0),解決問(wèn)題.1.已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動(dòng)圓M同時(shí)與圓C1及圓C2相外切,求動(dòng)圓圓心M的軌跡方程.【解析】如圖所示,設(shè)動(dòng)圓M與圓C1及圓C2分別外切于點(diǎn)A和點(diǎn)B,根據(jù)兩圓外切的條件,得|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|.因?yàn)閨MA|=|MB|,所以|MC1|-|AC1|=|MC2|-|BC2|,即|MC2|-|MC1|=2.1.已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動(dòng)圓M同時(shí)與圓C1及圓C2相外切,求動(dòng)圓圓心M的軌跡方程.【解析】如圖所示,設(shè)動(dòng)圓M與圓C1及圓C2分別外切于點(diǎn)A和點(diǎn)B,根據(jù)兩圓外切的條件,得|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|.因?yàn)閨MA|=|MB|,所以|MC1|-|AC1|=|MC2|-|BC2|,即|MC2|-|MC1|=2.建立直角坐標(biāo)系解決代數(shù)問(wèn)題

本題是利用坐標(biāo)解決代數(shù)問(wèn)題,數(shù)形結(jié)合,既直觀又簡(jiǎn)潔.2.已知實(shí)數(shù)x,y滿(mǎn)足方程x2+y2-4x+1=0.求x2+y2的最大值和最小值.【解題探究】利用幾何圖形不易找出點(diǎn)P的位置,可考慮利用坐標(biāo)及兩點(diǎn)間距離公式,求出線(xiàn)段的距離,將其轉(zhuǎn)化為代數(shù)形式的求最值問(wèn)題.

建立直角坐標(biāo)系解決平面幾何問(wèn)題

本題是關(guān)于平面幾何的最值問(wèn)題,用平面幾何的方法不易解決,用坐標(biāo)法轉(zhuǎn)化為代數(shù)問(wèn)題較為簡(jiǎn)單.

3.在△ABC中,D是BC邊上任意一點(diǎn)(D與B,C不重合)且|AB|2=|AD|2+|BD|·|DC|,求證:△ABC為等腰三角形.【解析】作AO⊥BC,垂足為O,以BC所在直線(xiàn)為x軸,以O(shè)A所在直線(xiàn)為y軸,建立直角坐標(biāo)系,如圖所示.設(shè)A(0,a),B(b,0),C(c,0),D(d,0).因?yàn)閨AB|2=|AD|2+|BD|·|DC|,所以b2+a2=d2+a2+(d-b)·(c-d),即-(d-b)(b+d)=(d-b)(c-d).又d-b≠0,故-b-d=c-d,即-b=c,所以△ABC為等腰三角形.1.坐標(biāo)法證明問(wèn)題的基本步驟(1)根據(jù)題設(shè)條件,建立適當(dāng)?shù)淖鴺?biāo)系;(2)根據(jù)題中所給的條件,寫(xiě)出已知點(diǎn)的坐標(biāo),設(shè)出未知點(diǎn)的坐標(biāo);(3)根據(jù)題設(shè)條件以及幾何性質(zhì),列出未知點(diǎn)所滿(mǎn)足的關(guān)系式;(4)通過(guò)計(jì)算來(lái)解決問(wèn)題.2.建立坐標(biāo)系的原則(1)如果圖形有對(duì)稱(chēng)中心,可以選對(duì)稱(chēng)中心為坐標(biāo)原點(diǎn);(2)如果圖形有對(duì)稱(chēng)軸,可以選擇對(duì)稱(chēng)軸為坐標(biāo)軸;(3)使圖形上的特殊點(diǎn)盡可能多地落在坐標(biāo)軸上.3.解決應(yīng)用題的關(guān)鍵建系—設(shè)點(diǎn)(點(diǎn)與坐標(biāo)的對(duì)應(yīng))—列式(方程與坐標(biāo)的對(duì)應(yīng))—化簡(jiǎn)—說(shuō)明.Thebestclassroomintheworldisatthefeetofanelderlyperson.世界上最好的課堂在老人的腳下.Havingachildfallasleepinyourarmsisoneofthemostpeacefulfeelingintheworld.讓一個(gè)孩子在你的臂彎入睡,你會(huì)體會(huì)到世間最安寧的感覺(jué).Beingkindismoreimportantthanbeingright.善良比真理更重要.Youshouldneversaynotoagiftfromachild.永遠(yuǎn)不要拒絕孩子送給你的禮物.Sometimesallapersonneedsisahandtoholdandahearttounderstand.有時(shí)候,一個(gè)人想要的只是一只可握的手和一顆感知的心.Love,nottime,healsallwounds.治愈一切創(chuàng)傷的并非時(shí)間,而是愛(ài).Lifeistough,butI'mtougher.生活是艱苦的,但我應(yīng)更堅(jiān)強(qiáng).勵(lì)志名言請(qǐng)您欣賞1.坐標(biāo)法證明問(wèn)題的基本步驟(1)根據(jù)題設(shè)條件,建立適當(dāng)?shù)淖鴺?biāo)系;(2)根據(jù)題中所給的條件,寫(xiě)出已知點(diǎn)的坐標(biāo),設(shè)出未知點(diǎn)的坐標(biāo);(3)根據(jù)題設(shè)條件以及幾何性質(zhì),列出未知點(diǎn)所滿(mǎn)足的關(guān)系式;(4)通過(guò)計(jì)算來(lái)解決問(wèn)題.3.在△ABC中,D是BC邊上任意一點(diǎn)(D與B,C不重合)且|AB|2=|AD|2+|BD|·|DC|,求證:△ABC為等腰三角形.【解析】作AO⊥BC,垂足為O,以BC所在直線(xiàn)為x軸,以O(shè)A所在直線(xiàn)為y軸,建立直角坐標(biāo)系,如圖所示.2.坐標(biāo)法坐標(biāo)法是在坐標(biāo)系的基礎(chǔ)上,把幾何問(wèn)題轉(zhuǎn)化為_(kāi)_________,通過(guò)代數(shù)運(yùn)算研究幾何圖形性質(zhì)的方法,是解析幾何中最基本的研究方法.代數(shù)問(wèn)題【答案】C【例1】某河上有拋物線(xiàn)形拱橋,當(dāng)水面距拱頂5m的時(shí)候,水面寬8m,一木船寬4m,高2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論