2024年高中數(shù)學(xué)新高二暑期培優(yōu)講義第10講 圓的方程(教師版)_第1頁(yè)
2024年高中數(shù)學(xué)新高二暑期培優(yōu)講義第10講 圓的方程(教師版)_第2頁(yè)
2024年高中數(shù)學(xué)新高二暑期培優(yōu)講義第10講 圓的方程(教師版)_第3頁(yè)
2024年高中數(shù)學(xué)新高二暑期培優(yōu)講義第10講 圓的方程(教師版)_第4頁(yè)
2024年高中數(shù)學(xué)新高二暑期培優(yōu)講義第10講 圓的方程(教師版)_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第第頁(yè)第10講圓的方程【題型歸納目錄】題型一:圓的標(biāo)準(zhǔn)方程題型二:圓的一般方程題型三:點(diǎn)與圓的位置關(guān)系題型四:二元二次曲線與圓的關(guān)系題型五:圓過(guò)定點(diǎn)問(wèn)題題型六:軌跡問(wèn)題【知識(shí)點(diǎn)梳理】知識(shí)點(diǎn)一:圓的標(biāo)準(zhǔn)方程SKIPIF1<0,其中SKIPIF1<0為圓心,SKIPIF1<0為半徑.知識(shí)點(diǎn)詮釋?zhuān)?1)如果圓心在坐標(biāo)原點(diǎn),這時(shí)SKIPIF1<0,圓的方程就是.有關(guān)圖形特征與方程的轉(zhuǎn)化:如:圓心在x軸上:SKIPIF1<0;圓與y軸相切時(shí):SKIPIF1<0;圓與x軸相切時(shí):SKIPIF1<0;與坐標(biāo)軸相切時(shí):SKIPIF1<0;過(guò)原點(diǎn):SKIPIF1<0(2)圓的標(biāo)準(zhǔn)方程SKIPIF1<0圓心為SKIPIF1<0,半徑為SKIPIF1<0,它顯現(xiàn)了圓的幾何特點(diǎn).(3)標(biāo)準(zhǔn)方程的優(yōu)點(diǎn)在于明確指出了圓心和半徑.由圓的標(biāo)準(zhǔn)方程可知,確定一個(gè)圓的方程,只需要a、b、r這三個(gè)獨(dú)立參數(shù),因此,求圓的標(biāo)準(zhǔn)方程常用定義法和待定系數(shù)法.知識(shí)點(diǎn)二:點(diǎn)和圓的位置關(guān)系如果圓的標(biāo)準(zhǔn)方程為SKIPIF1<0,圓心為SKIPIF1<0,半徑為SKIPIF1<0,則有(1)若點(diǎn)SKIPIF1<0在圓上SKIPIF1<0(2)若點(diǎn)SKIPIF1<0在圓外SKIPIF1<0(3)若點(diǎn)SKIPIF1<0在圓內(nèi)SKIPIF1<0知識(shí)點(diǎn)三:圓的一般方程當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0叫做圓的一般方程.SKIPIF1<0為圓心,SKIPIF1<0為半徑.知識(shí)點(diǎn)詮釋?zhuān)河煞匠蘏KIPIF1<0得SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí),方程只有實(shí)數(shù)解SKIPIF1<0.它表示一個(gè)點(diǎn).(2)當(dāng)SKIPIF1<0時(shí),方程沒(méi)有實(shí)數(shù)解,因而它不表示任何圖形.(3)當(dāng)SKIPIF1<0時(shí),可以看出方程表示以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓.知識(shí)點(diǎn)四:用待定系數(shù)法求圓的方程的步驟求圓的方程常用“待定系數(shù)法”.用“待定系數(shù)法”求圓的方程的大致步驟是:(1)根據(jù)題意,選擇標(biāo)準(zhǔn)方程或一般方程.(2)根據(jù)已知條件,建立關(guān)于SKIPIF1<0或SKIPIF1<0的方程組.(3)解方程組,求出SKIPIF1<0或SKIPIF1<0的值,并把它們代入所設(shè)的方程中去,就得到所求圓的方程.知識(shí)點(diǎn)五:軌跡方程求符合某種條件的動(dòng)點(diǎn)的軌跡方程,實(shí)質(zhì)上就是利用題設(shè)中的幾何條件,通過(guò)“坐標(biāo)法”將其轉(zhuǎn)化為關(guān)于變量SKIPIF1<0之間的方程.1、當(dāng)動(dòng)點(diǎn)滿足的幾何條件易于“坐標(biāo)化”時(shí),常采用直接法;當(dāng)動(dòng)點(diǎn)滿足的條件符合某一基本曲線的定義(如圓)時(shí),常采用定義法;當(dāng)動(dòng)點(diǎn)隨著另一個(gè)在已知曲線上的動(dòng)點(diǎn)運(yùn)動(dòng)時(shí),可采用代入法(或稱(chēng)相關(guān)點(diǎn)法).2、求軌跡方程時(shí),一要區(qū)分“軌跡”與“軌跡方程”;二要注意檢驗(yàn),去掉不合題設(shè)條件的點(diǎn)或線等.3、求軌跡方程的步驟:(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,用SKIPIF1<0表示軌跡(曲線)上任一點(diǎn)SKIPIF1<0的坐標(biāo);(2)列出關(guān)于SKIPIF1<0的方程;(3)把方程化為最簡(jiǎn)形式;(4)除去方程中的瑕點(diǎn)(即不符合題意的點(diǎn));(5)作答.【典例例題】題型一:圓的標(biāo)準(zhǔn)方程例1.圓SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱(chēng)的圓是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】圓SKIPIF1<0圓心為SKIPIF1<0,半徑為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱(chēng)的點(diǎn)為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱(chēng)的點(diǎn)為SKIPIF1<0,所以圓SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱(chēng)的圓是SKIPIF1<0.故選:D.例2.已知圓C的圓心在直線2x-y-7=0上,且圓C與y軸交于兩點(diǎn)A(0,-4),B(0,-2),則圓C的標(biāo)準(zhǔn)方程為(

)A.(x-2)2+(y-3)2=5 B.(x-2)2+(y+3)2=5C.(x+2)2+(y+3)2=5 D.(x+2)2+(y-3)2=5【解析】設(shè)圓心SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,則半徑為SKIPIF1<0,圓心SKIPIF1<0.即圓C的標(biāo)準(zhǔn)方程為SKIPIF1<0.故選:B例3.已知圓SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0,SKIPIF1<0,且圓心在直線SKIPIF1<0上,則圓SKIPIF1<0的標(biāo)準(zhǔn)方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】設(shè)圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0,因?yàn)閳ASKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0,SKIPIF1<0,且圓心在直線SKIPIF1<0上,所以有SKIPIF1<0,因此圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0,故選:A題型二:圓的一般方程例4.SKIPIF1<0三個(gè)頂點(diǎn)的坐標(biāo)分別是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0外接圓的方程是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】設(shè)所求圓方程為SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)都在圓上,所以SKIPIF1<0,解得SKIPIF1<0,即所求圓方程為:SKIPIF1<0.故選:C.例5.已知圓SKIPIF1<0經(jīng)過(guò)兩點(diǎn)SKIPIF1<0,SKIPIF1<0,且圓心SKIPIF1<0在直線SKIPIF1<0上,則圓SKIPIF1<0的方程為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】設(shè)圓的一般方程為SKIPIF1<0,圓心坐標(biāo)為SKIPIF1<0,因?yàn)閳ASKIPIF1<0經(jīng)過(guò)兩點(diǎn)SKIPIF1<0,SKIPIF1<0,且圓心SKIPIF1<0在直線SKIPIF1<0上,所以SKIPIF1<0,解得SKIPIF1<0,所以圓SKIPIF1<0的方程為SKIPIF1<0.故選:C.題型三:點(diǎn)與圓的位置關(guān)系例6.點(diǎn)P(m,3)與圓(x-2)2+(y-1)2=2的位置關(guān)系為(

)A.點(diǎn)在圓外 B.點(diǎn)在圓內(nèi) C.點(diǎn)在圓上 D.與m的值有關(guān)【解析】將點(diǎn)P(m,3)坐標(biāo)代入(x-2)2+(y-1)2=2中,有:SKIPIF1<0恒成立,故點(diǎn)P在圓外,故選:A.例7.點(diǎn)SKIPIF1<0與圓SKIPIF1<0的位置關(guān)系是(

).A.在圓內(nèi) B.在圓外 C.在圓上 D.不確定【解析】因?yàn)镾KIPIF1<0,所以點(diǎn)SKIPIF1<0在圓SKIPIF1<0外.故選:B題型四:二元二次曲線與圓的關(guān)系例8.(多選題)方程SKIPIF1<0表示圓,則實(shí)數(shù)a的可能取值為(

)A.4 B.2 C.0 D.SKIPIF1<0【答案】AD【解析】把方程SKIPIF1<0整理成SKIPIF1<0,即SKIPIF1<0,若表示圓則滿足SKIPIF1<0即SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0或SKIPIF1<0,觀察答案中只有SKIPIF1<0和SKIPIF1<0符合題意.故選:AD例9.(多選題)已知方程SKIPIF1<0,下列敘述正確的是(

)A.方程表示的是圓.B.當(dāng)SKIPIF1<0時(shí),方程表示過(guò)原點(diǎn)的圓.C.方程表示的圓的圓心在SKIPIF1<0軸上.D.方程表示的圓的圓心在SKIPIF1<0軸上.【答案】BC【解析】由SKIPIF1<0得:SKIPIF1<0;對(duì)于A,若SKIPIF1<0,即SKIPIF1<0,則方程不表示圓,A錯(cuò)誤;對(duì)于B,當(dāng)SKIPIF1<0時(shí),方程為SKIPIF1<0,則方程表示以SKIPIF1<0為圓心,半徑為SKIPIF1<0的圓,此圓經(jīng)過(guò)原點(diǎn),B正確;對(duì)于CD,若方程表示圓,則該圓圓心為SKIPIF1<0,半徑為SKIPIF1<0,則圓心在SKIPIF1<0軸上,不在SKIPIF1<0軸上,C正確,D錯(cuò)誤.故選:BC.題型五:圓過(guò)定點(diǎn)問(wèn)題例10.對(duì)任意實(shí)數(shù)SKIPIF1<0,圓SKIPIF1<0恒過(guò)定點(diǎn),則定點(diǎn)坐標(biāo)為_(kāi)_.【答案】SKIPIF1<0或SKIPIF1<0【解析】SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,或SKIPIF1<0,SKIPIF1<0,所以定點(diǎn)的坐標(biāo)是SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.例11.對(duì)任意實(shí)數(shù)SKIPIF1<0,圓SKIPIF1<0恒過(guò)定點(diǎn),則其坐標(biāo)為_(kāi)_____.【答案】SKIPIF1<0、SKIPIF1<0【解析】由SKIPIF1<0由得SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故填:SKIPIF1<0、SKIPIF1<0.例12.已知方程SKIPIF1<0表示圓,其中SKIPIF1<0,且a≠1,則不論a取不為1的任何實(shí)數(shù),上述圓恒過(guò)的定點(diǎn)的坐標(biāo)是________________.【答案】SKIPIF1<0【解析】由已知得SKIPIF1<0,它表示過(guò)圓SKIPIF1<0與直線SKIPIF1<0交點(diǎn)的圓.由SKIPIF1<0,解得SKIPIF1<0即定點(diǎn)坐標(biāo)為SKIPIF1<0.故答案為SKIPIF1<0題型六:軌跡問(wèn)題例13.已知線段AB的端點(diǎn)B的坐標(biāo)為SKIPIF1<0,端點(diǎn)A在圓C:SKIPIF1<0上運(yùn)動(dòng),求線段AB的中點(diǎn)P的軌跡方程,并說(shuō)明它的軌跡是什么.【解析】設(shè)點(diǎn)P的坐標(biāo)為SKIPIF1<0,點(diǎn)A的坐標(biāo)為SKIPIF1<0,又SKIPIF1<0,且P為線段AB的中點(diǎn),所以SKIPIF1<0,則SKIPIF1<0.因?yàn)辄c(diǎn)A在圓C:SKIPIF1<0上運(yùn)動(dòng),即有SKIPIF1<0,代入可得,SKIPIF1<0,整理可得SKIPIF1<0,化為標(biāo)準(zhǔn)方程可得SKIPIF1<0.所以,中點(diǎn)P的軌跡方程為SKIPIF1<0,該軌跡為以SKIPIF1<0為圓心,1為半徑的圓.例14.已知方程SKIPIF1<0表示圓,其圓心為SKIPIF1<0.(1)求圓心坐標(biāo)以及該圓半徑SKIPIF1<0的取值范圍;(2)若SKIPIF1<0,線段SKIPIF1<0的端點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,端點(diǎn)SKIPIF1<0在圓SKIPIF1<0上運(yùn)動(dòng),求線段SKIPIF1<0中點(diǎn)SKIPIF1<0的軌跡方程.【解析】(1)方程SKIPIF1<0可變?yōu)椋篠KIPIF1<0由方程表示圓,所以SKIPIF1<0,即得SKIPIF1<0,SKIPIF1<0.圓心坐標(biāo)為SKIPIF1<0.(2)當(dāng)SKIPIF1<0時(shí),圓SKIPIF1<0方程為:SKIPIF1<0,設(shè)SKIPIF1<0,又SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),SKIPIF1<0的坐標(biāo)為SKIPIF1<0則SKIPIF1<0,由端點(diǎn)SKIPIF1<0在圓SKIPIF1<0上運(yùn)動(dòng),SKIPIF1<0即SKIPIF1<0SKIPIF1<0線段SKIPIF1<0中點(diǎn)SKIPIF1<0的軌跡方程為SKIPIF1<0.例15.已知圓SKIPIF1<0經(jīng)過(guò)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn).(1)求圓SKIPIF1<0的方程;(2)設(shè)點(diǎn)SKIPIF1<0在圓SKIPIF1<0上運(yùn)動(dòng),點(diǎn)SKIPIF1<0,且點(diǎn)SKIPIF1<0滿足SKIPIF1<0,記點(diǎn)SKIPIF1<0的軌跡為SKIPIF1<0,求SKIPIF1<0的方程.【解析】(1)設(shè)圓SKIPIF1<0的方程為SKIPIF1<0,將三點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別代入方程,則SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以圓SKIPIF1<0的方程為SKIPIF1<0;(2)設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.因?yàn)辄c(diǎn)SKIPIF1<0在圓SKIPIF1<0上運(yùn)動(dòng),所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡方程為SKIPIF1<0.【過(guò)關(guān)測(cè)試】一、單選題1.若圓SKIPIF1<0的圓心到直線SKIPIF1<0的距離為SKIPIF1<0,則實(shí)數(shù)a的值為(

)A.0或2 B.0或-2C.0或SKIPIF1<0 D.-2或2【答案】A【解析】將圓的方程化為標(biāo)準(zhǔn)方程為:SKIPIF1<0,所以,圓心為SKIPIF1<0,半徑SKIPIF1<0.因?yàn)閳A心SKIPIF1<0到直線的距離為SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.故選:A.2.已知圓SKIPIF1<0,圓SKIPIF1<0與圓SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱(chēng),則圓SKIPIF1<0的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由題意知,圓SKIPIF1<0的圓心與SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱(chēng),且兩圓半徑相等,因?yàn)閳ASKIPIF1<0,即SKIPIF1<0,所以圓心SKIPIF1<0,半徑為SKIPIF1<0,設(shè)圓SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱(chēng)點(diǎn)為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,所以圓SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.故選:A.3.若點(diǎn)SKIPIF1<0在圓SKIPIF1<0的內(nèi)部,則a的取值范圍是().A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由題可知,半徑SKIPIF1<0,所以SKIPIF1<0,把點(diǎn)SKIPIF1<0代入方程,則SKIPIF1<0,解得SKIPIF1<0,所以故a的取值范圍是SKIPIF1<0.故選:D4.動(dòng)直線SKIPIF1<0SKIPIF1<0平分圓SKIPIF1<0的周長(zhǎng),則SKIPIF1<0的最小值(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由題意,動(dòng)直線SKIPIF1<0過(guò)圓SKIPIF1<0的圓心SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,故SKIPIF1<0的最小值為SKIPIF1<0.故選:D.二、填空題5.若l是經(jīng)過(guò)點(diǎn)SKIPIF1<0和圓SKIPIF1<0的圓心的直線,則l在y軸上的截距是________.【答案】SKIPIF1<0【解析】將圓化為標(biāo)準(zhǔn)方程可得,SKIPIF1<0,所以圓心為SKIPIF1<0.代入直線SKIPIF1<0的兩點(diǎn)式方程SKIPIF1<0,整理可得SKIPIF1<0.所以,l在y軸上的截距是SKIPIF1<0.故答案為:SKIPIF1<0.6.圓過(guò)點(diǎn)SKIPIF1<0、SKIPIF1<0,求面積最小的圓的一般方程為_(kāi)_______________.【答案】SKIPIF1<0【解析】當(dāng)SKIPIF1<0為圓的直徑時(shí),過(guò)SKIPIF1<0、SKIPIF1<0的圓的半徑最小,從而面積最?。?yàn)辄c(diǎn)SKIPIF1<0、SKIPIF1<0,線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,SKIPIF1<0,故所求圓的半徑為SKIPIF1<0,所以,所求圓的方程為SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.7.過(guò)圓SKIPIF1<0外一點(diǎn)SKIPIF1<0作圓的兩條切線,切點(diǎn)A、B,則SKIPIF1<0的外接圓的方程是________.【答案】SKIPIF1<0【解析】由圓SKIPIF1<0,得到圓心O坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0的外接圓為四邊形SKIPIF1<0的外接圓,如圖所示,又SKIPIF1<0,∴外接圓的直徑為SKIPIF1<0,半徑為SKIPIF1<0,外接圓的圓心C為線段OP的中點(diǎn),即SKIPIF1<0,則SKIPIF1<0的外接圓方程是SKIPIF1<0.故答案為:SKIPIF1<08.在平面直角坐標(biāo)系中,已知點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0在圓SKIPIF1<0上運(yùn)動(dòng),則線段AP的中點(diǎn)SKIPIF1<0的軌跡方程是______.【答案

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論