版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
【學習目標】1、掌握相似多邊形的性質及應用;2、了解圖形的位似,知道位似變換是特殊的相似變換,能利用位似的方法,將一個圖形放大或縮?。?、了解黃金分割值及相關運算.【要點梳理】要點一、相似多邊形相似多邊形的性質:(1)相似多邊形的對應角相等,對應邊的比相等.(2)相似多邊形的周長比等于相似比.(3)相似多邊形的面積比等于相似比的平方.要點詮釋:用相似多邊形定義判定特殊多邊形的相似情況:(1)對應角都相等的兩個多邊形不一定相似,如:矩形;(2)對應邊的比都相等的兩個多邊形不一定相似,如:菱形;(3)邊數相同的正多邊形都相似,如:正方形,正五邊形.要點二、位似1.位似圖形定義:如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一點,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.2.位似圖形的性質:(1)位似圖形的對應點和位似中心在同一條直線上;(2)位似圖形的對應點到位似中心的距離之比等于相似比;(3)位似圖形中不經過位似中心的對應線段平行.要點詮釋:(1)位似圖形與相似圖形的區(qū)別:位似圖形是一種特殊的相似圖形,而相似圖形未必能構成位似圖形.(2)位似變換中對應點的坐標變化規(guī)律:在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k.3.平移、軸對稱、旋轉和位似四種變換的異同:圖形經過平移、旋轉或軸對稱的變換后,雖然對應位置改變了,但大小和形狀沒有改變,即兩個圖形是全等的;而位似變換之后圖形是放大或縮小的,是相似的.4.作位似圖形的步驟第一步:在原圖上找若干個關鍵點,并任取一點作為位似中心;第二步:作位似中心與各關鍵點連線;第三步:在連線上取關鍵點的對應點,使之滿足放縮比例;第四步:順次連接各對應點.要點詮釋:位似中心可以取在多邊形外、多邊形內,或多邊形的一邊上、或頂點,下面是位似中心不同的畫法.要點三、黃金分割位似和黃金分割定義:如圖,將一條線段AB分割成大小兩條線段AP、PB,若小段與大段的長度之比等于大段的長度與全長之比,即此時線段AP叫作線段PB、AB的比例中項則P點就是線段AB的黃金分割點(黃金點這種分割就叫黃金分割.要點詮釋:1.黃金分割值:設AB=1,AP=x,則BP=1-x2.黃金三角形:頂角為36°的等腰三角形,它的底角為72°,恰好是頂角的2倍,人們稱這種三角形為黃金三角形.黃金三角形性質:底角平分線將其腰黃金分割.【典型例題】類型一、相似多邊形1.如圖,矩形草坪長20m,寬16m,沿草坪四周有2m寬的環(huán)形小路,小路內外邊緣所形成的兩個矩形相似嗎?為什么?HEHADADBCFGF【答案與解析】因為矩形的四個角都是直角,所以關鍵是看矩形ABCD與矩形EFGH的對應邊的比是否相等.∴矩形ABCD與矩形EFGH的對應邊的比不相等,因而它們不相似.【總結升華】兩個邊數相同的多邊形,必須同時滿足“對應邊的比都相等,對應角都相等”這兩個條件才能相似,缺一不可.舉一反三【變式】如圖,一張矩形紙片ABCD的長AB=a,寬BC=b.將紙片對折,折痕為EF,所得矩形AFED與矩形ABCD相似,則a:b=()A.2:1B.√區(qū):1D.3:2【答案】B.提示:∵矩形紙片對折,折痕為EF,∴AF=AB=a,∵矩形AFED與矩形ABCD相似,2=2,∴=.故選B.2.如圖,在長8cm,寬4cm的矩形中截去一個矩形,使留下的矩形(陰影部分)與原矩形相似,那么留下的矩形的面積為().A.2cm2B.4cm2C.8cm2D.16cm2【答案】C.【解析】設留下的矩形的寬為x,∵留下的矩形與原矩形相似,∴留下的矩形的面積為:2×4=8(cm2)故答案為:8.故選C.【總結升華】本題主要考查了相似多邊形的性質,在解題時要能根據相似多邊形的性質列出方程是本題的關鍵.類型二、位似3.利用位似圖形的方法把五邊形ABCDE放大1.5倍.【答案與解析】即是要畫一個五邊形A′B′C′D′E′,要與五邊形ABCDE相似且相似比D1C1D1畫法是:A11.在平面上任取一點O.2.以O為端點作射線OA、OB、OC、=OC′:OC=OD′:OD=OE′:OE=1.5.這樣1.5.則五邊形A′B′C′D′E′為所求.另外一種情況,所畫五邊形跟原五邊形分別在位似中心的兩側.【總結升華】由本題可知,利用位似的方法,可以把一個多邊形放大或縮小.4.如圖,矩形OABC的頂點坐標分別為O(0,0A(6,0B(6,4C(0,4).面積的,并分別寫出A′、B′、C′三點的坐標.【答案與解析】因為矩形OA′B′C′與矩形OABC是位似圖形,面積比為1:4,所以它們的位似比為1:2.連接OB,矩形OA′B′C′就是所求的圖形.A′,B′,C′三點的坐標分別為A′(3,0B′(3,2C′(0,2).(2)分別在線段OA,OB,OC的反向延長線上截取OA″、OB″、OC″,使OA″=A″、B″、C″三點的坐標分別為A″(-3,0B″(-3,-2C″(0,-2).【總結升華】平面直角坐標系內畫位似圖形,若沒有明確指出只畫一個,一定要把兩種情況都畫在坐標系內,并寫出兩種坐標.舉一反三【變式】在已知三角形內求作內接正方形.【答案】作法:(3)連接BF′,延長交AC于F;(4)作FG∥CB,交AB于G,從F、G分別作BC的垂線FE,GD;∴四邊形DEFG即為所求.A'BEC類型三、黃金分割5.求做黃金矩形(寫出具體做題步驟)并證明.【答案與解析】寬與長的比是的矩形叫黃金矩形心理測試表明:黃金矩形令人賞心悅目,它給我們以協調,勻稱的美感.我們以協調,勻稱的美感.)黃金矩形的作法如下(如圖所示第一步:作一個正方形ABCD;第二步:分別取AD,BC的中點M,N,連接MN;第三步:以N為圓心,ND長為半徑畫弧,交BC的延長線于E;第四步:過E作EF⊥AD,交AD的延長線于F.即矩形DCEF為黃金矩形.證明:在正方形ABCD中,取AB=2a,在Rt△DNC中,MDMDABNCE故矩形DCEF為黃金矩形.【總結升華】要求熟練掌握多邊形相似的比例關系.會利用相似比,求未知線段的長度或比值.舉一反三【變式】美是一種感覺,當人的肚臍是人的身高的黃金分割點時,人的下半身長與身高之比約為0.618,人的身段成為黃金比例,給人一種美感.某女士身高165cm,下半身長與身高的比值是0.60,為盡可能達到勻稱的效果,她應穿高跟鞋的高度大約為()A.4cm
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農村產業(yè)融合項目目標分析
- 果品綜合檢測風險應對策略
- 2024 年【數字素養(yǎng)】養(yǎng)考試題庫及答案 4
- 高中語文文言文閱讀典籍分類專訓選擇性必修中冊 過秦論(新教材課內必刷)
- 高中語法-句子結構和成分
- 高中英語語法系統(tǒng)講解之七非謂語動詞
- 《學前兒童衛(wèi)生保健》 課件 1.2.1 幼兒運動系統(tǒng)的特點及衛(wèi)生保健
- 第4章 圖象分割課件
- 吹泡泡課件教學課件
- 新生兒期臨床的主要問題課件
- ISTA 3A(中文版)運輸 試驗標準
- 電子課件機械基礎(第六版)完全版
- 31答復一通意見陳述書正文
- 【課件】物理新教材2019選擇性必修2教材解讀
- 英文版世界銀行采購指南
- DB43∕519-2010 煤礦井下作業(yè)勞保服
- 教研《My clothes Let's talk》評課稿6月
- 反強迫勞動反歧視反騷擾培訓演示文稿課件
- 130t/h燃煤注汽鍋爐安裝技術交底課件
- 人員定位礦用井口唯一性檢測系統(tǒng)
- 主題班會:拍賣會ppt課件
評論
0/150
提交評論