版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省省直轄縣2024屆中考數(shù)學五模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在海南建省辦經濟特區(qū)30周年之際,中央決定創(chuàng)建海南自貿區(qū)(港),引發(fā)全球高度關注.據(jù)統(tǒng)計,4月份互聯(lián)網信息中提及“海南”一詞的次數(shù)約48500000次,數(shù)據(jù)48500000科學記數(shù)法表示為()A.485×105B.48.5×106C.4.85×107D.0.485×1082.關于x的不等式組的所有整數(shù)解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,23.如圖,△ABC的面積為12,AC=3,現(xiàn)將△ABC沿AB所在直線翻折,使點C落在直線AD上的C處,P為直線AD上的一點,則線段BP的長可能是()A.3 B.5 C.6 D.104.某學校組織藝術攝影展,上交的作品要求如下:七寸照片(長7英寸,寬5英寸);將照片貼在一張矩形襯紙的正中央,照片四周外露襯紙的寬度相同;矩形襯紙的面積為照片面積的3倍.設照片四周外露襯紙的寬度為x英寸(如圖),下面所列方程正確的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×55.下列運算正確的是()A.a3?a2=a6 B.(2a)3=6a3C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a26.李老師在編寫下面這個題目的答案時,不小心打亂了解答過程的順序,你能幫他調整過來嗎?證明步驟正確的順序是已知:如圖,在中,點D,E,F(xiàn)分別在邊AB,AC,BC上,且,,求證:∽.證明:又,,,,∽.A. B. C. D.7.下列各式中,互為相反數(shù)的是()A.和 B.和 C.和 D.和8.中國在第二十三屆冬奧會閉幕式上奉獻了《2022相約北京》的文藝表演,會后表演視頻在網絡上推出,即刻轉發(fā)量就超過810000這個數(shù)用科學記數(shù)法表示為()A.8.1×106 B.8.1×105 C.81×105 D.81×1049.若正比例函數(shù)y=kx的圖象上一點(除原點外)到x軸的距離與到y(tǒng)軸的距離之比為3,且y值隨著x值的增大而減小,則k的值為()A.﹣ B.﹣3 C. D.310.下列運算正確的是()A.=2 B.4﹣=1 C.=9 D.=2二、填空題(共7小題,每小題3分,滿分21分)11.在△ABC中,MN∥BC分別交AB,AC于點M,N;若AM=1,MB=2,BC=3,則MN的長為_____.12.因式分解:=___.13.如圖,已知AB∥CD,若,則=_____.14.方程的解是_________.15.如圖,△ABC中,過重心G的直線平行于BC,且交邊AB于點D,交邊AC于點E,如果設=,=,用,表示,那么=___.16.如圖,將一張矩形紙片ABCD沿對角線BD折疊,點C的對應點為,再將所折得的圖形沿EF折疊,使得點D和點A重合若,,則折痕EF的長為______.17.把一張長方形紙條按如圖所示折疊后,若∠AOB′=70°,則∠B′OG=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F.(1)求證:CF是⊙O的切線;(2)若∠F=30°,EB=6,求圖中陰影部分的面積.(結果保留根號和π)19.(5分)如圖,在Rt△ABC的頂點A、B在x軸上,點C在y軸上正半軸上,且A(-1,0),B(4,0),∠ACB=90°.(1)求過A、B、C三點的拋物線解析式;(2)設拋物線的對稱軸l與BC邊交于點D,若P是對稱軸l上的點,且滿足以P、C、D為頂點的三角形與△AOC相似,求P點的坐標;(3)在對稱軸l和拋物線上是否分別存在點M、N,使得以A、O、M、N為頂點的四邊形是平行四邊形,若存在請直接寫出點M、點N的坐標;若不存在,請說明理由.圖1備用圖20.(8分)如圖,在平面直角坐標系中,以直線為對稱軸的拋物線與直線交于,兩點,與軸交于,直線與軸交于點.(1)求拋物線的函數(shù)表達式;(2)設直線與拋物線的對稱軸的交點為,是拋物線上位于對稱軸右側的一點,若,且與的面積相等,求點的坐標;(3)若在軸上有且只有一點,使,求的值.21.(10分)已知四邊形ABCD是⊙O的內接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E(1)延長DE交⊙O于點F,延長DC,F(xiàn)B交于點P,如圖1.求證:PC=PB;(2)過點B作BG⊥AD,垂足為G,BG交DE于點H,且點O和點A都在DE的左側,如圖2.若AB=,DH=1,∠OHD=80°,求∠BDE的大?。?2.(10分)某養(yǎng)雞場有2500只雞準備對外出售.從中隨機抽取了一部分雞,根據(jù)它們的質量(單位:),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關信息,解答下列問題:(Ⅰ)圖①中的值為;(Ⅱ)求統(tǒng)計的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(Ⅲ)根據(jù)樣本數(shù)據(jù),估計這2500只雞中,質量為的約有多少只?23.(12分)某中學為開拓學生視野,開展“課外讀書周”活動,活動后期隨機調查了九年級部分學生一周的課外閱讀時間,并將結果繪制成兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖的信息回答下列問題:(1)本次調查的學生總數(shù)為_____人,被調查學生的課外閱讀時間的中位數(shù)是_____小時,眾數(shù)是_____小時;并補全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,課外閱讀時間為5小時的扇形的圓心角度數(shù)是_____;(3)若全校九年級共有學生800人,估計九年級一周課外閱讀時間為6小時的學生有多少人?24.(14分)4月9日上午8時,2017徐州國際馬拉松賽鳴槍開跑,一名歲的男子帶著他的兩個孩子一同參加了比賽,下面是兩個孩子與記者的對話:根據(jù)對話內容,請你用方程的知識幫記者求出哥哥和妹妹的年齡.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
依據(jù)科學記數(shù)法的含義即可判斷.【詳解】解:48511111=4.85×117,故本題選擇C.【點睛】把一個數(shù)M記成a×11n(1≤|a|<11,n為整數(shù))的形式,這種記數(shù)的方法叫做科學記數(shù)法.規(guī)律:(1)當|a|≥1時,n的值為a的整數(shù)位數(shù)減1;(2)當|a|<1時,n的值是第一個不是1的數(shù)字前1的個數(shù),包括整數(shù)位上的1.2、B【解析】
分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集,據(jù)此即可得出答案.【詳解】解不等式﹣2x<4,得:x>﹣2,解不等式3x﹣5<1,得:x<2,則不等式組的解集為﹣2<x<2,所以不等式組的整數(shù)解為﹣1、0、1,故選:B.【點睛】考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.3、D【解析】
過B作BN⊥AC于N,BM⊥AD于M,根據(jù)折疊得出∠C′AB=∠CAB,根據(jù)角平分線性質得出BN=BM,根據(jù)三角形的面積求出BN,即可得出點B到AD的最短距離是8,得出選項即可.【詳解】解:如圖:
過B作BN⊥AC于N,BM⊥AD于M,
∵將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,
∴∠C′AB=∠CAB,
∴BN=BM,
∵△ABC的面積等于12,邊AC=3,
∴×AC×BN=12,
∴BN=8,
∴BM=8,
即點B到AD的最短距離是8,
∴BP的長不小于8,
即只有選項D符合,
故選D.【點睛】本題考查的知識點是折疊的性質,三角形的面積,角平分線性質的應用,解題關鍵是求出B到AD的最短距離,注意:角平分線上的點到角的兩邊的距離相等.4、D【解析】試題分析:由題意得;如圖知;矩形的長="7+2x"寬=5+2x∴矩形襯底的面積=3倍的照片的面積,可得方程為(7+2X)(5+2X)=3×7×5考點:列方程點評:找到題中的等量關系,根據(jù)兩個矩形的面積3倍的關系得到方程,注意的是矩形的間距都為等量的,從而得到大矩形的長于寬,用未知數(shù)x的代數(shù)式表示,而列出方程,屬于基礎題.5、D【解析】試題分析:根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加求解求解;根據(jù)積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘求解;根據(jù)完全平方公式求解;根據(jù)合并同類項法則求解.解:A、a3?a2=a3+2=a5,故A錯誤;B、(2a)3=8a3,故B錯誤;C、(a﹣b)2=a2﹣2ab+b2,故C錯誤;D、3a2﹣a2=2a2,故D正確.故選D.點評:本題考查了完全平方公式,合并同類項法則,同底數(shù)冪的乘法,積的乘方的性質,熟記性質與公式并理清指數(shù)的變化是解題的關鍵.6、B【解析】
根據(jù)平行線的性質可得到兩組對應角相等,易得解題步驟;【詳解】證明:,,又,,∽.故選B.【點睛】本題考查了相似三角形的判定與性質;關鍵是證明三角形相似.7、A【解析】
根據(jù)乘方的法則進行計算,然后根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),可得答案.【詳解】解:A.=9,=-9,故和互為相反數(shù),故正確;B.=9,=9,故和不是互為相反數(shù),故錯誤;C.=-8,=-8,故和不是互為相反數(shù),故錯誤;D.=8,=8故和不是互為相反數(shù),故錯誤.故選A.【點睛】本題考查了有理數(shù)的乘方和相反數(shù)的定義,關鍵是掌握有理數(shù)乘方的運算法則.8、B【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】810000=8.1×1.
故選B.【點睛】本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.9、B【解析】
設該點的坐標為(a,b),則|b|=1|a|,利用一次函數(shù)圖象上的點的坐標特征可得出k=±1,再利用正比例函數(shù)的性質可得出k=-1,此題得解.【詳解】設該點的坐標為(a,b),則|b|=1|a|,∵點(a,b)在正比例函數(shù)y=kx的圖象上,∴k=±1.又∵y值隨著x值的增大而減小,∴k=﹣1.故選:B.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征以及正比例函數(shù)的性質,利用一次函數(shù)圖象上點的坐標特征,找出k=±1是解題的關鍵.10、A【解析】
根據(jù)二次根式的性質對A進行判斷;根據(jù)二次根式的加減法對B進行判斷;根據(jù)二次根式的除法法則對C進行判斷;根據(jù)二次根式的乘法法則對D進行判斷.【詳解】A、原式=2,所以A選項正確;B、原式=4-3=,所以B選項錯誤;C、原式==3,所以C選項錯誤;D、原式=,所以D選項錯誤.故選A.【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當?shù)慕忸}途徑,往往能事半功倍.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案為1.12、【解析】分析:先提公因式,再利用平方差公式因式分解即可.詳解:a2(a-b)-4(a-b)=(a-b)(a2-4)=(a-b)(a-2)(a+2),故答案為:(a-b)(a-2)(a+2).點睛:本題考查的是因式分解,掌握提公因式法、平方差公式進行因式分解是解題的關鍵.13、【解析】【分析】利用相似三角形的性質即可解決問題;【詳解】∵AB∥CD,∴△AOB∽△COD,∴,故答案為.【點睛】本題考查平行線的性質,相似三角形的判定和性質等知識,熟練掌握相似三角形的判定與性質是解題的關鍵.14、x=-2【解析】方程兩邊同時平方得:,解得:,檢驗:(1)當x=3時,方程左邊=-3,右邊=3,左邊右邊,因此3不是原方程的解;(2)當x=-2時,方程左邊=2,右邊=2,左邊=右邊,因此-2是方程的解.∴原方程的解為:x=-2.故答案為:-2.點睛:(1)根號下含有未知數(shù)的方程叫無理方程,解無理方程的基本思想是化“無理方程”為“有理方程”;(2)解無理方程和解分式方程相似,求得未知數(shù)的值之后要檢驗,看所得結果是原方程的解還是增根.15、【解析】
連接AG,延長AG交BC于F.首先證明DG=GE,再利用三角形法則求出即可解決問題.【詳解】連接AG,延長AG交BC于F.
∵G是△ABC的重心,DE∥BC,
∴BF=CF,
,
∵,,
∴,
∵BF=CF,
∴DG=GE,
∵,,
∴,
∴,
故答案為.【點睛】本題考查三角形的重心,平行線的性質,平面向量等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.16、【解析】
首先由折疊的性質與矩形的性質,證得是等腰三角形,則在中,利用勾股定理,借助于方程即可求得AN的長,又由≌,易得:,由三角函數(shù)的性質即可求得MF的長,又由中位線的性質求得EM的長,則問題得解【詳解】如圖,設與AD交于N,EF與AD交于M,根據(jù)折疊的性質可得:,,,四邊形ABCD是矩形,,,,,,,設,則,在中,,,,即,,,,≌,,,,,,由折疊的性質可得:,,,,,故答案為.【點睛】本題考查了折疊的性質,全等三角形的判定與性質,三角函數(shù)的性質以及勾股定理等知識,綜合性較強,有一定的難度,解題時要注意數(shù)形結合思想與方程思想的應用.17、55°【解析】
由翻折性質得,∠BOG=∠B′OG,根據(jù)鄰補角定義可得.【詳解】解:由翻折性質得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=(180°﹣∠AOB′)=(180°﹣70°)=55°.故答案為55°.【點睛】考核知識點:補角,折疊.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)93﹣3π【解析】試題分析:(1)、連接OD,根據(jù)平行四邊形的性質得出∠AOC=∠OBE,∠COD=∠ODB,結合OB=OD得出∠DOC=∠AOC,從而證明出△COD和△COA全等,從而的得出答案;(2)、首先根據(jù)題意得出△OBD為等邊三角形,根據(jù)等邊三角形的性質得出EC=ED=BO=DB,根據(jù)Rt△AOC的勾股定理得出AC的長度,然后根據(jù)陰影部分的面積等于兩個△AOC的面積減去扇形OAD的面積得出答案.試題解析:(1)如圖連接OD.∵四邊形OBEC是平行四邊形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切線.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等邊三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,∵EB=6,∴OB=OD═OA=3,在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,∴AC=OA?tan60°=3,∴S陰=2?S△AOC﹣S扇形OAD=2××3×3﹣120Π×32360=9﹣3π.19、見解析【解析】分析:(1)根據(jù)求出點的坐標,用待定系數(shù)法即可求出拋物線的解析式.(2)分兩種情況進行討論即可.(3)存在.假設直線l上存在點M,拋物線上存在點N,使得以A、O、M、N為頂點的四邊形為平行四邊形.分當平行四邊形是平行四邊形時,當平行四邊形AONM是平行四邊形時,當四邊形AMON為平行四邊形時,三種情況進行討論.詳解:(1)易證,得,∴OC=2,∴C(0,2),∵拋物線過點A(-1,0),B(4,0)因此可設拋物線的解析式為將C點(0,2)代入得:,即∴拋物線的解析式為(2)如圖2,當時,則P1(,2),當時,∴OC∥l,∴,∴P2H=·OC=5,∴P2(,5)因此P點的坐標為(,2)或(,5).(3)存在.假設直線l上存在點M,拋物線上存在點N,使得以A、O、M、N為頂點的四邊形為平行四邊形.如圖3,當平行四邊形是平行四邊形時,M(,),(,),當平行四邊形AONM是平行四邊形時,M(,),N(,),如圖4,當四邊形AMON為平行四邊形時,MN與OA互相平分,此時可設M(,m),則∵點N在拋物線上,∴-m=-·(-+1)(--4)=-,∴m=,此時M(,),N(-,-).綜上所述,M(,),N(,)或M(,),N(,)或M(,),N(-,-).點睛:屬于二次函數(shù)綜合題,考查相似三角形的判定與性質,待定系數(shù)法求二次函數(shù)解析式等,注意分類討論的思想方法在數(shù)學中的應用.20、(1).;(2)點坐標為;.(3).【解析】分析:(1)根據(jù)已知列出方程組求解即可;(2)作AM⊥x軸,BN⊥x軸,垂足分別為M,N,求出直線l的解析式,再分兩種情況分別求出G點坐標即可;(3)根據(jù)題意分析得出以AB為直徑的圓與x軸只有一個交點,且P為切點,P為MN的中點,運用三角形相似建立等量關系列出方程求解即可.詳解:(1)由題可得:解得,,.二次函數(shù)解析式為:.(2)作軸,軸,垂足分別為,則.,,,,解得,,.同理,.,①(在下方),,,即,.,,.②在上方時,直線與關于對稱.,,.,,.綜上所述,點坐標為;.(3)由題意可得:.,,,即.,,.設的中點為,點有且只有一個,以為直徑的圓與軸只有一個交點,且為切點.軸,為的中點,.,,,,即,.,.點睛:此題主要考查二次函數(shù)的綜合問題,會靈活根據(jù)題意求拋物線解析式,會分析題中的基本關系列方程解決問題,會分類討論各種情況是解題的關鍵.21、(1)詳見解析;(2)∠BDE=20°.【解析】
(1)根據(jù)已知條件易證BC∥DF,根據(jù)平行線的性質可得∠F=∠PBC;再利用同角的補角相等證得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出結論;(2)連接OD,先證明四邊形DHBC是平行四邊形,根據(jù)平行四邊形的性質可得BC=DH=1,在Rt△ABC中,用銳角三角函數(shù)求出∠ACB=60°,進而判斷出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根據(jù)三角形外角的性質可得∠OAD=∠DOC=20°,最后根據(jù)圓周角定理及平行線的性質即可求解.【詳解】(1)如圖1,∵AC是⊙O的直徑,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四邊形BCDF是圓內接四邊形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如圖2,連接OD,∵AC是⊙O的直徑,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四邊形DHBC是平行四邊形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰△DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,設DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.【點睛】本題考查了圓內接四邊形的性質、圓周角定理、平行四邊形的判定與性質、等腰三角形的性質等知識點,解決第(2)問,作出輔助線,求得∠ODH=20°是解決本題的關鍵.22、(Ⅰ)28.(Ⅱ)平均數(shù)是1.52.眾數(shù)為1.8.中位數(shù)為1.5.(Ⅲ)200只.【解析】分析:(Ⅰ)用整體1減去所有已知的百分比即可求出m的值;(Ⅱ)根據(jù)眾數(shù)、中位數(shù)、加權平均數(shù)的定義計算即可;(Ⅲ)用總數(shù)乘以樣本中2.0kg的雞所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)觀察條形統(tǒng)計圖,∵,∴這組數(shù)據(jù)的平均數(shù)是1.52.∵在這組數(shù)據(jù)中,1.8出現(xiàn)了16次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為1.8.∵將這組數(shù)據(jù)按從小到大的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度升級版儲油罐交易合同(智能監(jiān)測系統(tǒng)配置)4篇
- 二零二五版二零二五年度化妝品店租賃及銷售合同范本4篇
- 2025年度牛肝菌產品研發(fā)與市場拓展合同4篇
- 2025年度農產品溯源體系構建與運營合同4篇
- 2025年度工業(yè)自動化設備廠家與客戶銷售合同范本3篇
- 二零二五年度電梯廣告位租賃合作協(xié)議8篇
- 2025年中國書店連鎖經營市場前景預測及投資規(guī)劃研究報告
- 2025年農業(yè)保險配套農資銷售合作協(xié)議7篇
- 二零二五年度社區(qū)食堂廚師勞務合作協(xié)議4篇
- 2024項目部安全管理人員安全培訓考試題及答案(網校專用)
- 電力系統(tǒng)動態(tài)仿真與建模
- 蝦皮shopee新手賣家考試題庫及答案
- 四川省宜賓市2023-2024學年八年級上學期期末義務教育階段教學質量監(jiān)測英語試題
- 價值醫(yī)療的概念 實踐及其實現(xiàn)路徑
- 2024年中國華能集團燃料有限公司招聘筆試參考題庫含答案解析
- 《紅樓夢》中的男性形象解讀
- 安全生產技術規(guī)范 第49部分:加油站 DB50-T 867.49-2023
- 《三國演義》中的語言藝術:詩詞歌賦的應用
- 腸外營養(yǎng)液的合理配制
- 消防安全教育培訓記錄表
- 2023年河南省新鄉(xiāng)市鳳泉區(qū)事業(yè)單位招聘53人高頻考點題庫(共500題含答案解析)模擬練習試卷
評論
0/150
提交評論