版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖,點A,B,C都在⊙O上,∠ABC=70°,則∠AOC的度數(shù)是()A.35° B.70° C.110° D.140°2.如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是()A.3cm B.cm C.2.5cm D.cm3.已知拋物線,則下列說法正確的是()A.拋物線開口向下 B.拋物線的對稱軸是直線C.當時,的最大值為 D.拋物線與軸的交點為4.若點,在反比例函數(shù)上,則的大小關(guān)系是()A. B. C. D.5.一組數(shù)據(jù):2,3,6,4,3,5,這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是()A.3,3 B.3,4 C.3.5,3 D.5,36.已知,則的值是()A. B. C. D.7.已知是方程x2﹣2x+c=0的一個根,則c的值是()A.﹣3 B.3 C. D.28.一個密閉不透明的盒子里有若干個白球,在不許將球倒出來數(shù)的情況下,為了估計白球數(shù),小剛向其中放入了8個黑球,攪勻后從中隨意摸出一個球記下顏色,再把它放回盒中,不斷重復(fù)這一過程,共摸球400次,其中80次摸到黑球,你估計盒中大約有白球(
)A.32個 B.36個 C.40個 D.42個9.下列方程有兩個相等的實數(shù)根是()A.x﹣x+3=0 B.x﹣3x+2=0 C.x﹣2x+1=0 D.x﹣4=010.四邊形ABCD的對角線互相平分,要使它變?yōu)榫匦危枰砑拥臈l件是(
)A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD11.半徑為的圓中,的圓心角所對的弧的長度為()A. B. C. D.12.如圖,二次函數(shù)的圖象與軸正半軸相交于A、B兩點,與軸相交于點C,對稱軸為直線且OA=OC,則下列結(jié)論:①②③④關(guān)于的方程有一個根為其中正確的結(jié)論個數(shù)有()A.1個 B.2個 C.3個 D.4個二、填空題(每題4分,共24分)13.已知反比例函數(shù)y=的圖象在第一、三象限內(nèi),則k的值可以是__.(寫出滿足條件的一個k的值即可)14.若=,則=__________.15.已知,是方程的兩個實根,則______.16.如圖,個全等的等腰三角形的底邊在同一條直線上,底角頂點依次重合.連接第一個三角形的底角頂點和第個三角形的頂角頂點交于點,則_________.17.若兩個相似三角形的面積比是9:25,則對應(yīng)邊上的中線的比為_________.18.如圖,點,分別在線段,上,若,,,,則的長為________.三、解答題(共78分)19.(8分)學(xué)校準備建一個矩形花圃,其中一邊靠墻,另外三邊用周長為30米的籬笆圍成.已知墻長為18米,設(shè)花圃垂直于墻的一邊長為x米,花圃的面積為y平方米.(1)求出y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;(2)當x為何值時,y有最大值?最大值是多少?20.(8分)在水果銷售旺季,某水果店購進一優(yōu)質(zhì)水果,進價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.銷售量y(千克)…34.83229.628…售價x(元/千克)…22.62425.226…(1)某天這種水果的售價為23.5元/千克,求當天該水果的銷售量.(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?21.(8分)如圖,二次函數(shù)y=x2+bx+c的圖象過點B(0,1)和C(4,3)兩點,與x軸交于點D、點E,過點B和點C的直線與x軸交于點A.(1)求二次函數(shù)的解析式;(2)在x軸上有一動點P,隨著點P的移動,存在點P使△PBC是直角三角形,請你求出點P的坐標;(3)若動點P從A點出發(fā),在x軸上沿x軸正方向以每秒2個單位的速度運動,同時動點Q也從A點出發(fā),以每秒a個單位的速度沿射線AC運動,是否存在以A、P、Q為頂點的三角形與△ABD相似?若存在,直接寫出a的值;若不存在,說明理由.22.(10分)如圖,已知拋物線與軸交于、兩點,與軸交于點.(1)求拋物線的解析式;(2)點是第一象限內(nèi)拋物線上的一個動點(與點、不重合),過點作軸于點,交直線于點,連接、.設(shè)點的橫坐標為,的面積為.求關(guān)于的函數(shù)解析式及自變量的取值范圍,并求出的最大值;(3)已知為拋物線對稱軸上一動點,若是以為直角邊的直角三角形,請直接寫出點的坐標.23.(10分)如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點P在⊙O上,弦PB與CD交于點F,且FC=FB.(1)求證:PD∥CB;(2)若AB=26,EB=8,求CD的長度.24.(10分)如圖,中,,將繞點順時針旋轉(zhuǎn)得到,使得點的對應(yīng)點落在邊上(點不與點重合),連接.(1)依題意補全圖形;(2)求證:四邊形是平行四邊形.25.(12分)某軟件開發(fā)公司開發(fā)了A、B兩種軟件,每種軟件成本均為1400元,售價分別為2000元、1800元,這兩種軟件每天的銷售額共為112000元,總利潤為28000元.(1)該店每天銷售這兩種軟件共多少個?(2)根據(jù)市場行情,公司擬對A種軟件降價銷售,同時提高B種軟件價格.此時發(fā)現(xiàn),A種軟件每降50元可多賣1件,B種軟件每提高50元就少賣1件.如果這兩種軟件每天銷售總件數(shù)不變,那么這兩種軟件一天的總利潤最多是多少?26.如圖已知直線與拋物線y=ax2+bx+c相交于A(﹣1,0),B(4,m)兩點,拋物線y=ax2+bx+c交y軸于點C(0,﹣),交x軸正半軸于D點,拋物線的頂點為M.(1)求拋物線的解析式;(2)設(shè)點P為直線AB下方的拋物線上一動點,當△PAB的面積最大時,求△PAB的面積及點P的坐標;(3)若點Q為x軸上一動點,點N在拋物線上且位于其對稱軸右側(cè),當△QMN與△MAD相似時,求N點的坐標.
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)圓周角定理問題可解.【詳解】解:∵∠ABC所對的弧是,
∠AOC所對的弧是,
∴∠AOC=2∠ABC=2×70°=140°.
故選D.【點睛】本題考查圓周角定理,解答關(guān)鍵是掌握圓周角和同弧所對的圓心角的數(shù)量關(guān)系.2、D【解析】分析:根據(jù)垂徑定理得出OE的長,進而利用勾股定理得出BC的長,再利用相似三角形的判定和性質(zhì)解答即可.詳解:連接OB,∵AC是⊙O的直徑,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故選D.點睛:本題考查了垂徑定理,關(guān)鍵是根據(jù)垂徑定理得出OE的長.3、D【分析】根據(jù)二次函數(shù)的性質(zhì)對A、B進行判斷;根據(jù)二次函數(shù)圖象上點的坐標特征對C進行判斷;利用拋物線與軸交點坐標對D進行判斷.【詳解】A、a=1>0,則拋物線的開口向上,所以A選項錯誤;B、拋物線的對稱軸為直線x=1,所以B選項錯誤;C、當x=1時,有最小值為,所以C選項錯誤;D、當x=0時,y=-3,故拋物線與軸的交點為,所以D選項正確.故選:D.【點睛】本題考查了二次函數(shù)的性質(zhì),主要涉及開口方向,對稱軸,與y軸的交點坐標,最值問題,熟記二次函數(shù)的性質(zhì)是解題的關(guān)鍵.4、A【分析】由k<0可得反比例函數(shù)的圖象在二、四象限,y隨x的增大而增大,可知y3<0,y1>0,y2>0,根據(jù)反比例函數(shù)的增減性即可得答案.【詳解】∵k<0,∴反比例函數(shù)的圖象在二、四象限,y隨x的增大而增大,∴y3<0,y1>0,y2>0,∵-3<-1,∴y1<y2,∴,故選:A.【點睛】本題考查反比例函數(shù)的性質(zhì),對于反比例函數(shù)y=(k≠0),當k>0時,圖象在一、三象限,在各象限,y隨x的增大而減??;當k<0時,圖象在二、四象限,在各象限內(nèi),y隨x的增大而增大;熟練掌握反比例函數(shù)的性質(zhì)是解題關(guān)鍵.5、C【分析】把這組數(shù)據(jù)按照從小到大的順序排列,第1、4個數(shù)的平均數(shù)是中位數(shù),在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1,得到這組數(shù)據(jù)的眾數(shù).【詳解】要求一組數(shù)據(jù)的中位數(shù),把這組數(shù)據(jù)按照從小到大的順序排列2,1,1,4,5,6,第1、4個兩個數(shù)的平均數(shù)是(1+4)÷2=1.5,所以中位數(shù)是1.5,在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1,即眾數(shù)是1.故選:C.【點睛】本題考查一組數(shù)據(jù)的中位數(shù)和眾數(shù),在求中位數(shù)時,首先要把這列數(shù)字按照從小到大或從的大到小排列,找出中間一個數(shù)字或中間兩個數(shù)字的平均數(shù)即為所求.6、A【解析】先把二次根式化簡變形,然后把a、b的值代入計算,即可求出答案.【詳解】解:∵,∴===;故選:A.【點睛】本題考查了二次根式的化簡求值,解題的關(guān)鍵是熟練掌握完全平方公式和平方差公式進行化簡.7、B【分析】把x=代入方程得到關(guān)于c的方程,然后解方程即可.【詳解】解:把x=代入方程x2﹣2x+c=0,得()2﹣2×+c=0,所以c=6﹣1=1.故選:B.【點睛】本題考查了一元二次方程根的性質(zhì),解答關(guān)鍵是將方程的根代入原方程求出字母系數(shù).8、A【分析】可根據(jù)“黑球數(shù)量÷黑白球總數(shù)=黑球所占比例”來列等量關(guān)系式,其中“黑白球總數(shù)=黑球個數(shù)+白球個數(shù)“,“黑球所占比例=隨機摸到的黑球次數(shù)÷總共摸球的次數(shù)”【詳解】設(shè)盒子里有白球x個,
根據(jù)得:解得:x=1.
經(jīng)檢驗得x=1是方程的解.
答:盒中大約有白球1個.
故選;A.【點睛】此題主要考查了利用頻率估計概率,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系列出方程,再求解,注意分式方程要驗根.9、C【分析】先根據(jù)方程求出△的值,再根據(jù)根的判別式的意義判斷即可.【詳解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程沒有實數(shù)根,故本選項不符合題意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有兩個不相等的實數(shù)根,故本選項不符合題意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有兩個相等的實數(shù)根,故本選項符合題意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有兩個不相等的實數(shù)根,故本選項不符合題意;故選:C.【點睛】本題考查了根的判別式,能熟記根的判別式的意義是解此題的關(guān)鍵.10、D【解析】四邊形ABCD的對角線互相平分,則說明四邊形是平行四邊形,由矩形的判定定理知,只需添加條件是對角線相等.【詳解】添加AC=BD,
∵四邊形ABCD的對角線互相平分,
∴四邊形ABCD是平行四邊形,
∵AC=BD,根據(jù)矩形判定定理對角線相等的平行四邊形是矩形,
∴四邊形ABCD是矩形,
故選D.【點睛】考查了矩形的判定,關(guān)鍵是掌握矩形的判定方法:①矩形的定義:有一個角是直角的平行四邊形是矩形;②有三個角是直角的四邊形是矩形;③對角線相等的平行四邊形是矩形.11、D【分析】根據(jù)弧長公式l=,計算即可.【詳解】弧長=,
故選:D.【點睛】本題考查弧長公式,解題的關(guān)鍵是記住弧長公式,屬于中考常考題型.12、C【解析】由二次函數(shù)圖象的開口方向、對稱軸及與y軸的交點可分別判斷出a、b、c的符號,從而可判斷①;由圖象可知當x=3時,y>0,可判斷②;由OA=OC,且OA<1,可判斷③;由OA=OC,得到方程有一個根為-c,設(shè)另一根為x,則=2,解方程可得x=4+c即可判斷④;從而可得出答案.【詳解】由圖象開口向下,可知a<0,與y軸的交點在x軸的下方,可知c<0,又對稱軸方程為x=2,所以0,所以b>0,∴abc>0,故①正確;由圖象可知當x=3時,y>0,∴9a+3b+c>0,故②錯誤;由圖象可知OA<1.∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正確;∵OA=OC,∴方程有一個根為-c,設(shè)另一根為x.∵對稱軸為直線x=2,∴=2,解得:x=4+c.故④正確;綜上可知正確的結(jié)論有三個.故選C.【點睛】本題考查了二次函數(shù)的圖象和性質(zhì).熟練掌握圖象與系數(shù)的關(guān)系以及二次函數(shù)與方程、不等式的關(guān)系是解題的關(guān)鍵.特別是利用好題目中的OA=OC,是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、1【解析】在本題中已知“反比例函數(shù)的圖像在第一、三象限內(nèi),”從而得到2-k>0,順利求解k的值.【詳解】反比例函數(shù)的圖像在第一、三象限內(nèi)可得,2-k>0解得:k<2不妨取k=1,可得已知反比例函數(shù),即可滿足的圖像在第一、三象限內(nèi).【點睛】熟練掌握反比例函數(shù)的性質(zhì)是本題的解題關(guān)鍵.14、【解析】由比例的性質(zhì)即可解答此題.【詳解】∵,∴a=b,∴=,故答案為【點睛】此題考查了比例的基本性質(zhì),熟練掌握這個性質(zhì)是解答此題的關(guān)鍵.15、27【分析】根據(jù)根與系數(shù)的關(guān)系,由x12+x22=(x1+x2)2?2x1x2,即可得到答案.【詳解】∵x1,x2是方程
x2?5x?1=0
的兩根,∴x1+x2=5,x1?x2=?1,∴x12+x22=(x1+x2)2?2x1x2=52-2×(-1)=27;故答案為27.【點睛】本題考查了一元二次方程的根與系數(shù)的關(guān)系,解題的關(guān)鍵是熟練掌握根與系數(shù)的關(guān)系,并正確進行化簡計算.16、n【分析】連接A1An,根據(jù)全等三角形的性質(zhì)得到∠AB1B2=∠A2B2B3,根據(jù)平行線的判定得到A1B1∥A2B2,又根據(jù)A1B1=A2B2,得到四邊形A1B1B2A2是平行四邊形,從而得到A1A2∥B1B2,從而得出A1An∥B1B2,然后根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】解:連接A1An,根據(jù)全等三角形的性質(zhì)得到∠AB1B2=∠A2B2B3,∴A1B1∥A2B2,又A1B1=A2B2,∴四邊形A1B1B2A2是平行四邊形.∴A1A2∥B1B2,A1A2=B1B2=A2A3,同理可得,A2A3=A3A4=A4A5=…=An-1An.根據(jù)全等易知A1,A2,A3,…,An共線,∴A1An∥B1B2,∴PnB1B2∽△PnAnA1,,又A1Pn+PnB2=A1B2,∴.故答案為:n.【點睛】本題考查了相似三角形的判定和性質(zhì),全等三角形的性質(zhì),等腰三角形的性質(zhì),正確的識別圖形是解題的關(guān)鍵.17、3:1【分析】根據(jù)相似三角形的性質(zhì):相似三角形對應(yīng)邊上的中線之比等于相似比即可得出答案.【詳解】∵兩個相似三角形的面積比是9:21∴兩個相似三角形的相似比是3:1∴對應(yīng)邊上的中線的比為3:1故答案為:3:1.【點睛】本題主要考查相似三角形的性質(zhì),掌握相似三角形的性質(zhì)是解題的關(guān)鍵.18、7.1【分析】根據(jù)平行線分線段成比例定理列出比例式,計算即可.【詳解】解:,,即,解得,,,故答案為:7.1.【點睛】本題考查的是平行線分線段成比例定理,靈活運用定理、找準對應(yīng)關(guān)系是解題的關(guān)鍵.三、解答題(共78分)19、(1)y=﹣2x2+30x;6≤x<11;(2)當x=7.1時,y的最大值是112.1.【分析】(1)利用矩形的面積公式,列出面積y關(guān)于x的函數(shù)解析式,即可求解;(2)根據(jù)自變量的取值范圍和函數(shù)的對稱性確定函數(shù)的最大值即可.【詳解】解:(1)由題意可得,y=x(30﹣2x)=﹣2x2+30x,即y與x的函數(shù)關(guān)系式是y=﹣2x2+30x;∵墻的長度為18,∴0<30﹣2x≤18,解得,6≤x<11,即x的取值范圍是6≤x<11;(2)由(1)知,y=﹣2x2+30x=﹣2(x﹣)2+,而6≤x<11,∴當x=7.1時,y取得最大值,此時y=112.1,即當x=7.1時,y的最大值是112.1.【點睛】本題主要考查二次函數(shù)的實際應(yīng)用,關(guān)鍵是根據(jù)題意得到函數(shù)關(guān)系式,然后利用二次函數(shù)的性質(zhì)進行求解即可.20、(1)當天該水果的銷售量為2千克;(2)如果某天銷售這種水果獲利150元,該天水果的售價為3元.【分析】(1)根據(jù)表格內(nèi)的數(shù)據(jù),利用待定系數(shù)法可求出y與x之間的函數(shù)關(guān)系式,再代入x=23.5即可求出結(jié)論;(2)根據(jù)總利潤每千克利潤銷售數(shù)量,即可得出關(guān)于x的一元二次方程,解之取其較小值即可得出結(jié)論.【詳解】(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,將(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y與x之間的函數(shù)關(guān)系式為y=﹣2x+1.當x=23.5時,y=﹣2x+1=2.答:當天該水果的銷售量為2千克.(2)根據(jù)題意得:(x﹣20)(﹣2x+1)=150,解得:x1=35,x2=3.∵20≤x≤32,∴x=3.答:如果某天銷售這種水果獲利150元,那么該天水果的售價為3元.【點睛】本題考查了一元二次方程的應(yīng)用以及一次函數(shù)的應(yīng)用,解題的關(guān)鍵是:(1)根據(jù)表格內(nèi)的數(shù)據(jù),利用待定系數(shù)法求出一次函數(shù)關(guān)系式;(2)找準等量關(guān)系,正確列出一元二次方程.21、(1)拋物線解析式y(tǒng)=x2–x+1;(2)點P坐標為(1,0),(3,0),(,0),(,0);(3)a=或.【分析】(1)將B、C兩點坐標代入二次函數(shù)解析式,通過聯(lián)立方程組可求得b、c的值,進而求出函數(shù)解析式;(2)設(shè)P(x,0),由△PBC是直角三角形,分∠CBP=90°與∠BPC=90°兩種情況討論,運用勾股定理可得x的值,進而得到P點坐標;(3)假設(shè)成立有△APQ∽△ADB或△APQ∽△ABD,則對應(yīng)邊成比例,可求出a的值.【詳解】(1)∵二次函數(shù)y=0.5x2+bx+c的圖象過點B(0,1)和C(4,3)兩點,∴,解得,∴拋物線解析式y(tǒng)=x2–x+1.(2)設(shè)點P坐標為(x,0).∵點P(x,0),點B(0,1),點C(4,3),∴PB==,CP==,BC==2,若∠BCP=90°,則BP2=BC2+CP2.∴x2+1=20+x2–8x+25,∴x=.若∠CBP=90°,則CP2=BC2+BP2.∴x2+1+20=x2–8x+25,∴x=.若∠BPC=90°,則BC2=BP2+CP2.∴x2+1+x2–8x+25=20,∴x1=1,x2=3,綜上所述:點P坐標為(1,0),(3,0),(,0),(,0).(3)a=或.∵拋物線解析式y(tǒng)=x2–x+1與x軸交于點D,點E,∴0=x2–x+1,∴x1=1,x2=2,∴點D(1,0).∵點B(0,1),C(4,3),∴直線BC解析式y(tǒng)=x+1.當y=0時,x=–2,∴點A(–2,0).∵點A(–2,0),點B(0,1),點D(1,0),∴AD=3,AB=.設(shè)經(jīng)過t秒,∴AP=2t,AQ=at,若△APQ∽△ADB,∴,即,∴a=,若△APQ∽△ABD,∴,即,∴a=.綜上所述:a=或.【點睛】此題考查了二次函數(shù)解析式的確定、直角三角形的判定以及相似三角形的性質(zhì)等,難度適中.22、(1);(2),當時,有最大值,最大值;(2),【解析】(1)由拋物線與x軸的兩個交點坐標可設(shè)拋物線的解析式為y=a(x+1)(x-2),將點C(0,2)代入拋物線解析式中即可得出關(guān)于a一元一次方程,解方程即可求出a的值,從而得出拋物線的解析式;(2)設(shè)直線BC的函數(shù)解析式為y=kx+b.結(jié)合點B、點C的坐標利用待定系數(shù)法求出直線BC的函數(shù)解析式,再由點D橫坐標為m找出點D、點E的坐標,結(jié)合兩點間的距離公式以及三角形的面積公式求出函數(shù)解析式,利用配方法將S關(guān)于m的函數(shù)關(guān)系式進行變形,從而得出結(jié)論;(2)先求出對稱軸,設(shè)M(1,y),然后分分BM為斜邊和CM為斜邊兩種情況求解即可;【詳解】解:(1)∵拋物線與x軸交于A(-1,0)、B(2,0)兩點,∴設(shè)拋物線的解析式為y=a(x+1)(x-2),又∵點C(0,2)在拋物線圖象上,∴2=a×(0+1)×(0-2),解得:a=-1.∴拋物線解析式為y=-(x+1)(x-2)=-x2+2x+2.∴拋物線解析式為;(2)設(shè)直線的函數(shù)解析式為,∵直線過點,,∴,解得,∴,設(shè),,∴,∴,∵,∴當時,有最大值,最大值;(2)∵,∴對稱軸為直線x=1,設(shè)M(1,y),則CM2=1+(y-2)2=y2-6y+10,BM2=y2+(1-2)2=y2+4,BC2=9+9=18.當BM為斜邊時,則y2-6y+10+18=y2+4,解得y=4,此時M(1,4);當CM為斜邊時,y2+4+18=y2-6y+10,解得y=-2,此時M(1,-2);綜上可得點的坐標為,.【點睛】本題考查了二次函數(shù)的性質(zhì)、待定系數(shù)法求函數(shù)解析式、兩點間的距離公式、三角形的面積公式以及勾股定理,解題的關(guān)鍵:(1)待定系數(shù)法求函數(shù)解析式;(2)求出S與m的關(guān)系式;(2)分類討論.23、(1)證明見解析;(2)CD=1.【解析】(1)欲證明PD∥BC,只要證明∠P=∠CBF即可;(2)由△ACE∽△CBE,可得,求出EC,再根據(jù)垂徑定理即可解決問題.【詳解】(1)證明:∵FC=FB,∴∠C=∠CBF,∵∠P=∠C,∴∠P=∠CBF,∴PD∥BC.(2)連接AC,∵AB是直徑,∴∠ACB=90°,∵AB⊥CD,∴CE=ED,∠AEC=∠CEB=90°,∵∠CAE+∠ACE=90°,∠ACE+∠BCE=90°,∴∠CAE=∠BCE,∴△ACE∽△CBE,∴,∴,∴EC2=144,∵EC>0,∴EC=12,∴CD=2EC=1.【點睛】本題考查圓周角定理,垂徑定理,平行線的判定,等腰三角形的性質(zhì),相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找相似三角形解決問題,屬于中考??碱}型.24、(1)詳見解析;(2)詳見解析.【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)作圖;(2)由旋轉(zhuǎn)的性質(zhì)可得,然后根據(jù)全等三角形的性質(zhì)得出,,從而使問題得證.【詳解】解:(1)如圖:(2)證明:∵繞點順時針旋轉(zhuǎn)得到,∴,,.∵,∴.∵,∴.∵,∴,∵,∴,∴,∴,又∵,∴四邊形是平行四邊形.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),全等的判定和性質(zhì),平行四邊形的判定,比較基礎(chǔ),掌握判定定理及其性質(zhì)正確推理論證是本題的解題關(guān)鍵.25、(1)60;(2)1【分析】(1)設(shè)每天銷售A種軟件個,B種軟件個,分別根據(jù)每天的銷售額共為112000元,總利潤為28000元,列方程組即可解得;(2)由這兩種軟件每天銷售總件數(shù)不變,則設(shè)A種軟件每天多銷售個,則B種軟件每天少銷售個,總利潤為,根據(jù):每種軟件的總利潤=每個利潤銷量,得到二次函數(shù)求最值即可.【詳解】(1)設(shè)每天銷售A種軟件個,B種軟件個.由題意得:,解得:,.∴該公司每天銷售這兩種軟件共60個.(2)設(shè)這兩種軟件一天的總利潤
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- IT行業(yè)企業(yè)數(shù)字化轉(zhuǎn)型解決方案
- 基于人工智能技術(shù)的人才培訓(xùn)協(xié)議
- 物流行業(yè)多式聯(lián)運物流方案設(shè)計及優(yōu)化
- 環(huán)保科技產(chǎn)業(yè)項目合作意向書
- 農(nóng)業(yè)種植合作風(fēng)險共擔(dān)協(xié)議
- 海底兩萬里冒險之旅征文
- 2025年福建b2貨運資格證全題
- 2025年浙江貨運從業(yè)資格證模擬考試下載題
- 車聯(lián)網(wǎng)技術(shù)研發(fā)推廣協(xié)議
- 智能制造+物流配送服務(wù)合同
- 徐州市2023-2024學(xué)年九年級上學(xué)期期末道德與法治試卷(含答案解析)
- 農(nóng)業(yè)信息化實現(xiàn)農(nóng)業(yè)現(xiàn)代化的數(shù)字化轉(zhuǎn)型
- 《義務(wù)教育道德與法治課程標準(2022年版)》
- 20以內(nèi)退位減法口算練習(xí)題100題30套(共3000題)
- 調(diào)味品年終總結(jié)匯報
- 無人機遙感技術(shù)與應(yīng)用
- 云南省昆明市呈貢區(qū)2023-2024學(xué)年九年級上學(xué)期期末數(shù)學(xué)試卷+
- 有趣的英語小知識講座
- 2023年物探工程師年度總結(jié)及下一年計劃
- 2024年擬攻讀博士學(xué)位期間研究計劃
- 4馬克思主義宗教觀
評論
0/150
提交評論