2022-2023學年上海市松江區(qū)數(shù)學九上期末達標測試試題含解析_第1頁
2022-2023學年上海市松江區(qū)數(shù)學九上期末達標測試試題含解析_第2頁
2022-2023學年上海市松江區(qū)數(shù)學九上期末達標測試試題含解析_第3頁
2022-2023學年上海市松江區(qū)數(shù)學九上期末達標測試試題含解析_第4頁
2022-2023學年上海市松江區(qū)數(shù)學九上期末達標測試試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,在正方形網(wǎng)格中,線段A′B′是線段AB繞某點順時針旋轉一定角度所得,點A′與點A是對應點,則這個旋轉的角度大小可能是()A.45° B.60° C.90° D.135°2.如圖,在⊙O中,點A、B、C在⊙O上,且∠ACB=110°,則∠α=()A.70° B.110° C.120° D.140°3.在數(shù)軸上,點A所表示的實數(shù)為3,點B所表示的實數(shù)為a,⊙A的半徑為2,下列說法中不正確的是()A.當1<a<5時,點B在⊙A內(nèi)B.當a<5時,點B在⊙A內(nèi)C.當a<1時,點B在⊙A外D.當a>5時,點B在⊙A外4.已知(﹣1,y1),(2,y2),(3,y3)在二次函數(shù)y=﹣x2+4x+c的圖象上,則y1,y2,y3的大小關系正確的是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y1<y3<y25.如圖,四邊形ABCD內(nèi)接于⊙O,若它的一個外角∠DCE=65°,∠ABC=68°,則∠A的度數(shù)為().A.112° B.68° C.65° D.52°6.某商場對上周女裝的銷售情況進行了統(tǒng)計,如下表,經(jīng)理決定本周進女裝時多進一些紅色的,可用來解釋這一現(xiàn)象的統(tǒng)計知識是()顏色黃色綠色白色紫色紅色數(shù)量(件)10018022080520A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差7.已知二次函數(shù)y=x2﹣6x+m(m是實數(shù)),當自變量任取x1,x2時,分別與之對應的函數(shù)值y1,y2滿足y1>y2,則x1,x2應滿足的關系式是()A.x1﹣3<x2﹣3 B.x1﹣3>x2﹣3 C.|x1﹣3|<|x2﹣3| D.|x1﹣3|>|x2﹣3|8.如圖,BD是⊙O的直徑,點A、C在⊙O上,,∠AOB=60°,則∠BDC的度數(shù)是()A.60° B.45° C.35° D.30°9.下列四對圖形中,是相似圖形的是()A.任意兩個三角形 B.任意兩個等腰三角形C.任意兩個直角三角形 D.任意兩個等邊三角形10.已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結論:①該拋物線的對稱軸在y軸左側;②關于x的方程ax2+bx+c+2=0無實數(shù)根;③a﹣b+c≥0;④的最小值為1.其中,正確結論的個數(shù)為()A.1個 B.2個 C.1個 D.4個二、填空題(每小題3分,共24分)11.方程x(x﹣5)=0的根是_____.12.若關于x的一元二次方程(a﹣1)x2﹣2x+2=0有實數(shù)根,則整數(shù)a的最大值為______.13.如圖,△ABC是直角三角形,BC是斜邊,將△ABP繞點A逆時針旋轉后,恰好能與△ACP′完全重合,如果AP=8,則PP′的長度為___________.14.如圖,正方形的邊長為8,點在上,交于點.若,則長為__.15.已知a、b是一元二次方程x2+x﹣1=0的兩根,則a+b=_____.16.cos30°+sin45°+tan60°=_____.17.已知:,且y≠4,那么=______.18.如圖,圓錐的底面直徑,母線的中點處有一食物,一只小螞蟻從點出發(fā)沿圓錐表面到處覓食,螞蟻走過的最短路線長為___________三、解答題(共66分)19.(10分)計算:.20.(6分)將矩形紙片沿翻折,使點落在線段上,對應的點為,若,求的長.21.(6分)如圖,方格紙中每個小正方形的邊長都是單位1,△ABC的三個頂點都在格點(即這些小正方形的頂點)上,且它們的坐標分別是A(2,﹣3),B(5,﹣1),C(1,3),結合所給的平面直角坐標系,解答下列問題:(1)請在如圖坐標系中畫出△ABC;(2)畫出△ABC關于y軸對稱的△A'B'C',并寫出△A'B'C'各頂點坐標。22.(8分)小明想要測量一棵樹DE的高度,他在A處測得樹頂端E的仰角為30°,他走下臺階到達C處,測得樹的頂端E的仰角是60°.已知A點離地面的高度AB=2米,∠BCA=30°,且B,C,D三點在同一直線上.求樹DE的高度;23.(8分)在一個不透明的袋子中裝有3個乒乓球,分別標有數(shù)字1,2,3,這些乒乓球除所標數(shù)字不同外其余均相同.先從袋子中隨機摸出1個乒乓球,記下標號后放回,再從袋子中隨機摸出1個乒乓球記下標號,用畫樹狀圖(或列表)的方法,求兩次摸出的乒乓球標號之和是偶數(shù)的概率.24.(8分)如圖①,拋物線y=x2﹣(a+1)x+a與x軸交于A、B兩點(點A位于點B的左側),與y軸交于點C.已知△ABC的面積為1.(1)求這條拋物線相應的函數(shù)表達式;(2)在拋物線上是否存在一點P,使得∠POB=∠CBO,若存在,請求出點P的坐標;若不存在,請說明理由;(3)如圖②,M是拋物線上一點,N是射線CA上的一點,且M、N兩點均在第二象限內(nèi),A、N是位于直線BM同側的不同兩點.若點M到x軸的距離為d,△MNB的面積為2d,且∠MAN=∠ANB,求點N的坐標.25.(10分)解方程:(1)用公式法解方程:3x2﹣x﹣4=1(2)用配方法解方程:x2﹣4x﹣5=1.26.(10分)如圖,在△ABC中,O是AB邊上的點,以O為圓心,OB為半徑的⊙0與AC相切于點D,BD平分∠ABC,AD=OD,AB=12,求CD的長.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】如圖:連接AA′,BB′,作線段AA′,BB′的垂直平分線交點為O,點O即為旋轉中心.連接OA,OB′,∠AOA′即為旋轉角.【詳解】解:如圖:連接AA′,BB′,作線段AA′,BB′的垂直平分線交點為O,點O即為旋轉中心.連接OA,OB′,∠AOA′即為旋轉角,∴旋轉角為90°故選:C.【點睛】本題考查了圖形的旋轉,掌握作圖的基本步驟是解題的關鍵2、D【分析】作所對的圓周角∠ADB,如圖,利用圓內(nèi)接四邊形的性質得∠ADB=70°,然后根據(jù)圓周角定理求解.【詳解】解:作所對的圓周角∠ADB,如圖,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣110°=70°,∴∠AOB=2∠ADB=140°.故選D.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半3、B【解析】試題解析:由于圓心A在數(shù)軸上的坐標為3,圓的半徑為2,∴當d=r時,⊙A與數(shù)軸交于兩點:1、5,故當a=1、5時點B在⊙A上;當d<r即當1<a<5時,點B在⊙A內(nèi);當d>r即當a<1或a>5時,點B在⊙A外.由以上結論可知選項A、C、D正確,選項B錯誤.故選B.點睛:若用d、r分別表示點到圓心的距離和圓的半徑,則當d>r時,點在圓外;當d=r時,點在圓上;當d<r時,點在圓內(nèi).4、D【分析】首先根據(jù)二次函數(shù)解析式確定拋物線的對稱軸為x=1,再根據(jù)拋物線的增減性以及對稱性可得y1,y1,y3的大小關系.【詳解】∵二次函數(shù)y=-x1+4x+c=-(x-1)1+c+4,∴對稱軸為x=1,∵a<0,∴x<1時,y隨x增大而增大,當x>1時,y隨x的增大而減小,∵(-1,y1),(1,y1),(3,y3)在二次函數(shù)y=-x1+4x+c的圖象上,且-1<1<3,|-1-1|>|1-3|,∴y1<y3<y1.故選D.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,以及二次函數(shù)的性質,關鍵是掌握二次函數(shù)圖象上點的坐標滿足其解析式.5、C【分析】由四邊形ABCD內(nèi)接于⊙O,可得∠BAD+∠BCD=180°,又由鄰補角的定義,可證得∠BAD=∠DCE.繼而求得答案.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠DCE=180°,∴∠A=∠DCE=65°.故選:C.【點睛】此題考查了圓的內(nèi)接四邊形的性質.注意掌握圓內(nèi)接四邊形的對角互補是解此題的關鍵.6、C【解析】在決定本周進女裝時多進一些紅色的,主要考慮的是各色女裝的銷售的數(shù)量,而紅色上周銷售量最大.【詳解】解:在決定本周進女裝時多進一些紅色的,主要考慮的是各色女裝的銷售的數(shù)量,而紅色上周銷售量最大.由于眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),故考慮的是各色女裝的銷售數(shù)量的眾數(shù).

故選:C.【點睛】反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.7、D【分析】先利用二次函數(shù)的性質確定拋物線的對稱軸為直線x=3,然后根據(jù)離對稱軸越遠的點對應的函數(shù)值越大可得到|x1-3|>|x2-3|.【詳解】解:拋物線的對稱軸為直線x=-=3,∵y1>y2,

∴點(x1,y1)比點(x2,y2)到直線x=3的距離要大,

∴|x1-3|>|x2-3|.

故選D.【點睛】本題考查二次函數(shù)圖象上點的坐標特征:二次函數(shù)圖象上點的坐標滿足其解析式.也考查了二次函數(shù)的性質.8、D【解析】試題分析:直接根據(jù)圓周角定理求解.連結OC,如圖,∵=,∴∠BDC=∠BOC=∠AOB=×60°=30°.故選D.考點:圓周角定理.9、D【分析】根據(jù)相似圖形的定義知,相似圖形的形狀相同,但大小不一定相同,對題中條件一一分析,排除錯誤答案.【詳解】解:A、任意兩個三角形,形狀不確定,不一定是相似圖形,故A錯誤;B、任意兩個等腰三角形,形狀不確定,不一定是相似圖形,故B錯誤;C、任意兩個直角三角形,直角邊的長度不確定,不一定是相似圖形,故C錯誤;D、任意兩個等邊三角形,形狀相同,但大小不一定相同,符合相似形的定義,故D正確;故選:D.【點睛】本題考查的是相似形的識別,關鍵要聯(lián)系實際,根據(jù)相似圖形的定義得出.10、D【解析】本題考察二次函數(shù)的基本性質,一元二次方程根的判別式等知識點.【詳解】解:∵,∴拋物線的對稱軸<0,∴該拋物線的對稱軸在軸左側,故①正確;∵拋物線與軸最多有一個交點,∴∴關于的方程中∴關于的方程無實數(shù)根,故②正確;∵拋物線與軸最多有一個交點,∴當時,≥0正確,故③正確;當時,,故④正確.故選D.【點睛】本題的解題關鍵是熟悉函數(shù)的系數(shù)之間的關系,二次函數(shù)和一元二次方程的關系,難點是第四問的證明,要考慮到不等式的轉化.二、填空題(每小題3分,共24分)11、x1=0,x2=1【分析】根據(jù)x(x-1)=0,推出x=0,x-1=0,求出方程的解即可.【詳解】解:x(x﹣1)=0,∴x=0,x﹣1=0,解得:x1=0,x2=1,故答案為x1=0,x2=1.【點睛】本題考查了解一元一次方程和解一元二次方程,關鍵是能把解一元二次方程轉化成解一元一次方程.12、1【解析】試題分析:根據(jù)一元二次方程的根的判別式,直接可求△===4-8a+8≥0,解得a≤,因此a的最大整數(shù)解為1.故答案為1.點睛:此題主要考查了一元二次方程根的判別式△=b2-4ac,解題關鍵是確定a、b、c的值,再求出判別式的結果.可根據(jù)下面的理由:(1)當△>0時,方程有兩個不相等的實數(shù)根;(2)當△=0時,方程有兩個相等的實數(shù)根;(3)當△<0時,方程沒有實數(shù)根.13、【分析】通過旋轉的性質可以得到,,,從而可以得到是等腰直角三角形,再根據(jù)勾股定理可以計算出的長度.【詳解】解:根據(jù)旋轉的性質得:,∴是等腰直角三角形,∴∴∴故答案為:.【點睛】本題主要考查了旋轉的性質以及勾股定理的應用,其中根據(jù)旋轉的性質推斷出是等腰直角三角形是解題的關鍵.14、6【分析】根據(jù)正方形的性質可得OC∥AB,OB=,從而證出△COQ∽△PBQ,然后根據(jù)相似三角形的性質即可求出,從而求出的長.【詳解】解:∵正方形的邊長為8,∴OC∥AB,OB=∴△COQ∽△PBQ∴∴∴故答案為:6.【點睛】此題考查的是正方形的性質、相似三角形的判定及性質,掌握正方形的性質、利用平行證相似和相似三角形的面積比等于相似比的平方是解決此題的關鍵.15、-1【分析】直接根據(jù)兩根之和的公式可得答案.【詳解】∵a、b是一元二次方程x2+x﹣1=0的兩根,∴a+b=﹣1,故答案為:﹣1.【點睛】此題考查一元二次方程根與系數(shù)的公式,熟記公式并熟練解題是關鍵.16、【分析】根據(jù)特殊角的三角函數(shù)值、二次根式的化簡進行計算,在計算時,需要針對每個考點分別進行計算,然后求得計算結果.【詳解】cos30°+sin45°+tan60°===故填:.【點睛】解決此類題目的關鍵是熟記特殊角的三角函數(shù)值.17、【分析】由分式的性質和等比性質,即可得到答案.【詳解】解:∵,∴,由等比性質,得:;故答案為:.【點睛】本題考查了比例的性質,以及分式的性質,解題的關鍵是熟練掌握等比性質.18、15【分析】先將圓錐的側面展開圖畫出來,然后根據(jù)弧長公式求出的度數(shù),然后利用等邊三角形的性質和特殊角的三角函數(shù)在即可求出AD的長度.【詳解】圓錐的側面展開圖如下圖:∵圓錐的底面直徑∴底面周長為設則有解得又∴為等邊三角形為PB中點∴螞蟻從點出發(fā)沿圓錐表面到處覓食,螞蟻走過的最短路線長為故答案為:.【點睛】本題主要考查圓錐的側面展開圖,弧長公式和解直角三角形,掌握弧長公式和特殊角的三角函數(shù)值是解題的關鍵.三、解答題(共66分)19、1-.【解析】分別把各特殊角的三角函數(shù)值代入,再根據(jù)實數(shù)的運算法則進行計算.【詳解】原式=4×-3×+2××=1-.【點睛】本題考查了特殊角的三角函數(shù)值.熟記特殊角的三角函數(shù)值是解題的關鍵.20、10【分析】設,根據(jù)三角函數(shù)表示出其它線段,最終表示出BE、AB,然后在三角形ABE中根據(jù)勾股定理即可求出AB.【詳解】解:∵是矩形,沿翻折∴,BE=EF,∠AFE=∠B=∠D=,∴∠AFD+∠DAF=∠AFD+∠EFC=,∴∠DAF=∠EFC,∴,設,則∴,∴,∴AD=8k,∴,∴,∴,∴,∵,∴,∴,∴.【點睛】此題考查了折疊的性質、矩形的性質、三角函數(shù)的定義以及勾股定理.此題難度適中,注意掌握折疊前后圖形的對應關系,注意掌握數(shù)形結合思想與方程思想的應用.21、(1)圖見解析;(2)圖見解析;A′(-2,-3),B′(-5,-1),C′(-1,3)【分析】(1)在坐標系內(nèi)描出各點,順次連接各點即可;(2)分別作出各點關于y軸的對稱點,再順次連接,并寫出各點坐標即可;【詳解】(1)如圖,△ABC為所求;(2)如圖,△A'B'C'為所求;A′(-2,-3),B′(-5,-1),C′(-1,3)【點睛】本題考查的是作圖?軸對稱變換,熟知軸對稱的性質是解答此題的關鍵.22、樹DE的高度為6米.【分析】先根據(jù)∠ACB=30°求出AC=1米,再求出∠EAC=60°,解Rt△ACE得EC的長,依據(jù)∠DCE=60°,解Rt△CDE得的長.【詳解】∵∠B=90°,∠ACB=30°,AB=2,∴AC=2AB=1.又∵∠DCE=60°,∴∠ACE=90°.∵AF∥BD,∴∠CAF=∠ACB=30°,∴∠EAC=60°.在Rt△ACE中,∵,∴,在Rt△DCE中∵∠DCE=60°,,∴.答:樹DE的高度為6米.【點睛】本題考查了解直角三角形的應用,解題的關鍵是正確的構造直角三角形并選擇正確的邊角關系解直角三角形.23、圖形見解析,概率為【分析】根據(jù)題意列出樹形圖,再利用概率公式計算即可.【詳解】根據(jù)題意,列表如下:共有9種結果,并且它們出現(xiàn)的可能性相等,符合題意的結果有5種,.【點睛】本題考查概率的計算,關鍵在于熟悉樹形圖和概率公式.24、(1)y=x2+2x﹣3;(2)存在,點P坐標為或;(3)點N的坐標為(﹣4,1)【分析】(1)分別令y=0,x=0,可表示出A、B、C的坐標,從而表示△ABC的面積,求出a的值繼而即可得二次函數(shù)解析式;(2)如圖①,當點P在x軸上方拋物線上時,平移BC所在的直線過點O交x軸上方拋物線于點P,則有BC∥OP,此時∠POB=∠CBO,聯(lián)立拋物線得解析式和OP所在直線的解析式解方程組即可求解;當點P在x軸下方時,取BC的中點D,易知D點坐標為(,),連接OD并延長交x軸下方的拋物線于點P,由直角三角形斜邊中線定理可知,OD=BD,∠DOB=∠CBO即∠POB=∠CBO,聯(lián)立拋物線的解析式和OP所在直線的解析式解方程組即可求解.(3)如圖②,通過點M到x軸的距離可表示△ABM的面積,由S△ABM=S△BNM,可證明點A、點N到直線BM的距離相等,即AN∥BM,通過角的轉化得到AM=BN,設點N的坐標,表示出BN的距離可求出點N.【詳解】(1)當y=0時,x2﹣(a+1)x+a=0,解得x1=1,x2=a,當x=0,y=a∴點C坐標為(0,a),∵C(0,a)在x軸下方∴a<0∵點A位于點B的左側,∴點A坐標為(a,0),點B坐標為(1,0),∴AB=1﹣a,OC=﹣a,∵△ABC的面積為1,∴,∴a1=﹣3,a2=4(因為a<0,故舍去),∴a=﹣3,∴y=x2+2x﹣3;(2)設直線BC:y=kx﹣3,則0=k﹣3,∴k=3;①當點P在x軸上方時,直線OP的函數(shù)表達式為y=3x,則,∴,,∴點P坐標為;②當點P在x軸下方時,直線OP的函數(shù)表達式為y=﹣3x,則∴,,∴點P坐標為,綜上可得,點P坐標為或;(3)如圖,過點A作AE⊥BM于點E,過點N作NF⊥BM于點F,設AM與BN交于點G,延長MN與x軸交于點H;∵AB=4,點M到x軸的距離為d,∴S△AMB=∵S△MNB=2d,∴S△AMB=S△MNB,∴,∴AE=NF,∵AE⊥BM,NF⊥BM,∴四邊形AEFN是矩形,∴AN∥BM,∵∠MAN=∠ANB,∴GN=GA,∵AN∥BM,∴∠MAN=∠AMB,∠ANB=∠NBM,∴∠AMB=∠NBM,∴GB=GM,∴GN+GB=GA+GM即BN=MA,在△AMB和△NBM中∴△AMB≌△NBM(SAS),∴∠ABM=∠NMB,∵OA=OC=3,∠AOC=90°,∴∠OAC=∠OCA=45°,又∵AN∥BM,∴∠ABM=∠OAC=45°,∴∠NMB=45°,∴∠ABM+∠NMB=90°,∴∠BHM=90°,∴M、N、H三點的橫坐標相同,且BH=MH,∵M是拋物線上一點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論